Do you want to publish a course? Click here

Attention over Parameters for Dialogue Systems

297   0   0.0 ( 0 )
 Added by Andrea Madotto Mr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Dialogue systems require a great deal of different but complementary expertise to assist, inform, and entertain humans. For example, different domains (e.g., restaurant reservation, train ticket booking) of goal-oriented dialogue systems can be viewed as different skills, and so does ordinary chatting abilities of chit-chat dialogue systems. In this paper, we propose to learn a dialogue system that independently parameterizes different dialogue skills, and learns to select and combine each of them through Attention over Parameters (AoP). The experimental results show that this approach achieves competitive performance on a combined dataset of MultiWOZ, In-Car Assistant, and Persona-Chat. Finally, we demonstrate that each dialogue skill is effectively learned and can be combined with other skills to produce selective responses.



rate research

Read More

Task-oriented dialogue systems are either modularized with separate dialogue state tracking (DST) and management steps or end-to-end trainable. In either case, the knowledge base (KB) plays an essential role in fulfilling user requests. Modularized systems rely on DST to interact with the KB, which is expensive in terms of annotation and inference time. End-to-end systems use the KB directly as input, but they cannot scale when the KB is larger than a few hundred entries. In this paper, we propose a method to embed the KB, of any size, directly into the model parameters. The resulting model does not require any DST or template responses, nor the KB as input, and it can dynamically update its KB via fine-tuning. We evaluate our solution in five task-oriented dialogue datasets with small, medium, and large KB size. Our experiments show that end-to-end models can effectively embed knowledge bases in their parameters and achieve competitive performance in all evaluated datasets.
Scarcity of training data for task-oriented dialogue systems is a well known problem that is usually tackled with costly and time-consuming manual data annotation. An alternative solution is to rely on automatic text generation which, although less accurate than human supervision, has the advantage of being cheap and fast. In this paper we propose a novel controlled data generation method that could be used as a training augmentation framework for closed-domain dialogue. Our contribution is twofold. First we show how to optimally train and control the generation of intent-specific sentences using a conditional variational autoencoder. Then we introduce a novel protocol called query transfer that allows to leverage a broad, unlabelled dataset to extract relevant information. Comparison with two different baselines shows that our method, in the appropriate regime, consistently improves the diversity of the generated queries without compromising their quality.
200 - Jia-Chen Gu , Tianda Li , Quan Liu 2020
The NOESIS II challenge, as the Track 2 of the 8th Dialogue System Technology Challenges (DSTC 8), is the extension of DSTC 7. This track incorporates new elements that are vital for the creation of a deployed task-oriented dialogue system. This paper describes our systems that are evaluated on all subtasks under this challenge. We study the problem of employing pre-trained attention-based network for multi-turn dialogue systems. Meanwhile, several adaptation methods are proposed to adapt the pre-trained language models for multi-turn dialogue systems, in order to keep the intrinsic property of dialogue systems. In the released evaluation results of Track 2 of DSTC 8, our proposed models ranked fourth in subtask 1, third in subtask 2, and first in subtask 3 and subtask 4 respectively.
Evaluating open-domain dialogue systems is difficult due to the diversity of possible correct answers. Automatic metrics such as BLEU correlate weakly with human annotations, resulting in a significant bias across different models and datasets. Some researchers resort to human judgment experimentation for assessing response quality, which is expensive, time consuming, and not scalable. Moreover, judges tend to evaluate a small number of dialogues, meaning that minor differences in evaluation configuration may lead to dissimilar results. In this paper, we present interpretable metrics for evaluating topic coherence by making use of distributed sentence representations. Furthermore, we introduce calculable approximations of human judgment based on conversational coherence by adopting state-of-the-art entailment techniques. Results show that our metrics can be used as a surrogate for human judgment, making it easy to evaluate dialogue systems on large-scale datasets and allowing an unbiased estimate for the quality of the responses.
Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local utterances, but also the global semantics of the entire dialogue session, modeling the long-range history information is a critical issue. To this end, we propose a novel Memory-Augmented Dialogue management model (MAD) which employs a memory controller and two additional memory structures, i.e., a slot-value memory and an external memory. The slot-value memory tracks the dialogue state by memorizing and updating the values of semantic slots (for instance, cuisine, price, and location), and the external memory augments the representation of hidden states of traditional recurrent neural networks through storing more context information. To update the dialogue state efficiently, we also propose slot-level attention on user utterances to extract specific semantic information for each slot. Experiments show that our model can obtain state-of-the-art performance and outperforms existing baselines.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا