Even if the concerns related to the naturalness of the electroweak scale are repressed, the Higgs mass and stability of the electroweak vacuum do not allow arbitrarily large supersymmetry breaking scale, $M_S$, in the minimal models with split or high-scale supersymmetry. We show that $M_S$ can be raised to the GUT scale if the theory below $M_S$ contains a Higgs doublet, a pair of TeV scale Higgsino and widely separated gauginos in addition to the Standard Model particles. The presence of wino and gluino below ${cal O}(100)$ TeV leads to precision unification of the gauge couplings consistent with the current limits on the proton lifetime. Wino, at this scale, renders the Higgsino as pseudo-Dirac dark matter which in turn evades the existing constraints from the direct detection experiments. Bino mass scale is required to be $gtrsim 10^{10}$ GeV to get the observed Higgs mass respecting the current limit on the charged Higgs mass. The framework predicts, $1 lesssim tanbeta lesssim 2.2$ and $tau[pto e^+, pi^0] < 7 times 10^{35}$ years, almost independent of values of the other parameters. The electroweak vacuum is found to be stable or metastable. The underlying framework provides an example of a viable sub-GUT scale theory of supersymmetric grand unified theory in which supersymmetry and unified gauge symmetry are broken at a common scale.