Scalable Estimation and Inference with Large-scale or Online Survival Data


Abstract in English

With the rapid development of data collection and aggregation technologies in many scientific disciplines, it is becoming increasingly ubiquitous to conduct large-scale or online regression to analyze real-world data and unveil real-world evidence. In such applications, it is often numerically challenging or sometimes infeasible to store the entire dataset in memory. Consequently, classical batch-based estimation methods that involve the entire dataset are less attractive or no longer applicable. Instead, recursive estimation methods such as stochastic gradient descent that process data points sequentially are more appealing, exhibiting both numerical convenience and memory efficiency. In this paper, for scalable estimation of large or online survival data, we propose a stochastic gradient descent method which recursively updates the estimates in an online manner as data points arrive sequentially in streams. Theoretical results such as asymptotic normality and estimation efficiency are established to justify its validity. Furthermore, to quantify the uncertainty associated with the proposed stochastic gradient descent estimator and facilitate statistical inference, we develop a scalable resampling strategy that specifically caters to the large-scale or online setting. Simulation studies and a real data application are also provided to assess its performance and illustrate its practical utility.

Download