Do you want to publish a course? Click here

Applying Information Theory to Design Optimal Filters for Photometric Redshifts

68   0   0.0 ( 0 )
 Added by J. Bryce Kalmbach
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper we apply ideas from information theory to create a method for the design of optimal filters for photometric redshift estimation. We show the method applied to a series of simple example filters in order to motivate an intuition for how photometric redshift estimators respond to the properties of photometric passbands. We then design a realistic set of six filters covering optical wavelengths that optimize photometric redshifts for $z <= 2.3$ and $i < 25.3$. We create a simulated catalog for these optimal filters and use our filters with a photometric redshift estimation code to show that we can improve the standard deviation of the photometric redshift error by 7.1% overall and improve outliers 9.9% over the standard filters proposed for the Large Synoptic Survey Telescope (LSST). We compare features of our optimal filters to LSST and find that the LSST filters incorporate key features for optimal photometric redshift estimation. Finally, we describe how information theory can be applied to a range of optimization problems in astronomy.



rate research

Read More

49 - Tamas Budavari 2001
We propose a novel type filter for multicolor imaging to improve on the photometric redshift estimation of galaxies. An extra filter - specific to a certain photometric system - may be utilized with high efficiency. We present a case study of the Hubble Space Telescopes Advanced Camera for Surveys and show that one extra exposure could cut down the mean square error on photometric redshifts by 34% over the z<1.3 redshift range.
75 - Kristen Menou 2018
Machine learning (ML) is a standard approach for estimating the redshifts of galaxies when only photometric information is available. ML photo-z solutions have traditionally ignored the morphological information available in galaxy images or partly included it in the form of hand-crafted features, with mixed results. We train a morphology-aware photometric redshift machine using modern deep learning tools. It uses a custom architecture that jointly trains on galaxy fluxes, colors and images. Galaxy-integrated quantities are fed to a Multi-Layer Perceptron (MLP) branch while images are fed to a convolutional (convnet) branch that can learn relevant morphological features. This split MLP-convnet architecture, which aims to disentangle strong photometric features from comparatively weak morphological ones, proves important for strong performance: a regular convnet-only architecture, while exposed to all available photometric information in images, delivers comparatively poor performance. We present a cross-validated MLP-convnet model trained on 130,000 SDSS-DR12 galaxies that outperforms a hyperoptimized Gradient Boosting solution (hyperopt+XGBoost), as well as the equivalent MLP-only architecture, on the redshift bias metric. The 4-fold cross-validated MLP-convnet model achieves a bias $delta z / (1+z) =-0.70 pm 1 times 10^{-3} $, approaching the performance of a reference ANNZ2 ensemble of 100 distinct models trained on a comparable dataset. The relative performance of the morphology-aware and morphology-blind models indicates that galaxy morphology does improve ML-based photometric redshift estimation.
The observing strategy of a galaxy survey influences the degree to which its resulting data can be used to accomplish any science goal. LSST is thus seeking metrics of observing strategies for multiple science cases in order to optimally choose a cadence. Photometric redshifts are essential for many extragalactic science applications of LSSTs data, including but not limited to cosmology, but there are few metrics available, and they are not straightforwardly integrated with metrics of other cadence-dependent quantities that may influence any given use case. We propose a metric for observing strategy optimization based on the potentially recoverable mutual information about redshift from a photometric sample under the constraints of a realistic observing strategy. We demonstrate a tractable estimation of a variational lower bound of this mutual information implemented in a public code using conditional normalizing flows. By comparing the recoverable redshift information across observing strategies, we can distinguish between those that preclude robust redshift constraints and those whose data will preserve more redshift information, to be generically utilized in a downstream analysis. We recommend the use of this versatile metric to observing strategy optimization for redshift-dependent extragalactic use cases, including but not limited to cosmology, as well as any other science applications for which photometry may be modeled from true parameter values beyond redshift.
The ability to integrate information in the brain is considered to be an essential property for cognition and consciousness. Integrated Information Theory (IIT) hypothesizes that the amount of integrated information ($Phi$) in the brain is related to the level of consciousness. IIT proposes that to quantify information integration in a system as a whole, integrated information should be measured across the partition of the system at which information loss caused by partitioning is minimized, called the Minimum Information Partition (MIP). The computational cost for exhaustively searching for the MIP grows exponentially with system size, making it difficult to apply IIT to real neural data. It has been previously shown that if a measure of $Phi$ satisfies a mathematical property, submodularity, the MIP can be found in a polynomial order by an optimization algorithm. However, although the first version of $Phi$ is submodular, the lat
We propose a new information theoretic metric for finding periodicities in stellar light curves. Light curves are astronomical time series of brightness over time, and are characterized as being noisy and unevenly sampled. The proposed metric combines correntropy (generalized correlation) with a periodic kernel to measure similarity among samples separated by a given period. The new metric provides a periodogram, called Correntropy Kernelized Periodogram (CKP), whose peaks are associated with the fundamental frequencies present in the data. The CKP does not require any resampling, slotting or folding scheme as it is computed directly from the available samples. CKP is the main part of a fully-automated pipeline for periodic light curve discrimination to be used in astronomical survey databases. We show that the CKP method outperformed the slotted correntropy, and conventional methods used in astronomy for periodicity discrimination and period estimation tasks, using a set of light curves drawn from the MACHO survey. The proposed metric achieved 97.2% of true positives with 0% of false positives at the confidence level of 99% for the periodicity discrimination task; and 88% of hits with 11.6% of multiples and 0.4% of misses in the period estimation task.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا