Do you want to publish a course? Click here

Exponential inequalities for dependent V-statistics via random Fourier features

124   0   0.0 ( 0 )
 Added by Fang Han
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We establish exponential inequalities for a class of V-statistics under strong mixing conditions. Our theory is developed via a novel kernel expansion based on random Fourier features and the use of a probabilistic method. This type of expansion is new and useful for handling many notorious classes of kernels.



rate research

Read More

Statistical methods for functional data are of interest for many applications. In this paper, we prove a central limit theorem for random variables taking their values in a Hilbert space. The random variables are assumed to be weakly dependent in the sense of near epoch dependence, where the underlying process fulfills some mixing conditions. As parametric inference in an infinite dimensional space is difficult, we show that the nonoverlapping block bootstrap is consistent. Furthermore, we show how these results can be used for degenerate von Mises-statistics.
221 - Xinjia Chen 2014
We explore the applications of our previously established likelihood-ratio method for deriving concentration inequalities for a wide variety of univariate and multivariate distributions. New concentration inequalities for various distributions are developed without the idea of minimizing moment generating functions.
In this paper, we study Kaplan-Meier V- and U-statistics respectively defined as $theta(widehat{F}_n)=sum_{i,j}K(X_{[i:n]},X_{[j:n]})W_iW_j$ and $theta_U(widehat{F}_n)=sum_{i eq j}K(X_{[i:n]},X_{[j:n]})W_iW_j/sum_{i eq j}W_iW_j$, where $widehat{F}_n$ is the Kaplan-Meier estimator, ${W_1,ldots,W_n}$ are the Kaplan-Meier weights and $K:(0,infty)^2tomathbb R$ is a symmetric kernel. As in the canonical setting of uncensored data, we differentiate between two asymptotic behaviours for $theta(widehat{F}_n)$ and $theta_U(widehat{F}_n)$. Additionally, we derive an asymptotic canonical V-statistic representation of the Kaplan-Meier V- and U-statistics. By using this representation we study properties of the asymptotic distribution. Applications to hypothesis testing are given.
Nonparametric latent structure models provide flexible inference on distinct, yet related, groups of observations. Each component of a vector of $d ge 2$ random measures models the distribution of a group of exchangeable observations, while their dependence structure regulates the borrowing of information across different groups. Recent work has quantified the dependence between random measures in terms of Wasserstein distance from the maximally dependent scenario when $d=2$. By solving an intriguing max-min problem we are now able to define a Wasserstein index of dependence $I_mathcal{W}$ with the following properties: (i) it simultaneously quantifies the dependence of $d ge 2$ random measures; (ii) it takes values in [0,1]; (iii) it attains the extreme values ${0,1}$ under independence and complete dependence, respectively; (iv) since it is defined in terms of the underlying Levy measures, it is possible to evaluate it numerically in many Bayesian nonparametric models for partially exchangeable data.
We deal with a planar random flight ${(X(t),Y(t)),0<tleq T}$ observed at $n+1$ equidistant times $t_i=iDelta_n,i=0,1,...,n$. The aim of this paper is to estimate the unknown value of the parameter $lambda$, the underlying rate of the Poisson process. The planar random flights are not markovian, then we use an alternative argument to derive a pseudo-maximum likelihood estimator $hat{lambda}$ of the parameter $lambda$. We consider two different types of asymptotic schemes and show the consistency, the asymptotic normality and efficiency of the estimator proposed. A Monte Carlo analysis for small sample size $n$ permits us to analyze the empirical performance of $hat{lambda}$. A different approach permits us to introduce an alternative estimator of $lambda$ which is consistent, asymptotically normal and asymptotically efficient without the request of other assumptions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا