Do you want to publish a course? Click here

Learning fine-grained search space pruning and heuristics for combinatorial optimization

97   0   0.0 ( 0 )
 Added by Juho Lauri
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Combinatorial optimization problems arise in a wide range of applications from diverse domains. Many of these problems are NP-hard and designing efficient heuristics for them requires considerable time and experimentation. On the other hand, the number of optimization problems in the industry continues to grow. In recent years, machine learning techniques have been explored to address this gap. We propose a framework for leveraging machine learning techniques to scale-up exact combinatorial optimization algorithms. In contrast to the existing approaches based on deep-learning, reinforcement learning and restricted Boltzmann machines that attempt to directly learn the output of the optimization problem from its input (with limited success), our framework learns the relatively simpler task of pruning the elements in order to reduce the size of the problem instances. In addition, our framework uses only interpretable learning models based on intuitive features and thus the learning process provides deeper insights into the optimization problem and the instance class, that can be used for designing better heuristics. For the classical maximum clique enumeration problem, we show that our framework can prune a large fraction of the input graph (around 99 % of nodes in case of sparse graphs) and still detect almost all of the maximum cliques. This results in several fold speedups of state-of-the-art algorithms. Furthermore, the model used in our framework highlights that the chi-squared value of neighborhood degree has a statistically significant correlation with the presence of a node in a maximum clique, particularly in dense graphs which constitute a significant challenge for modern solvers. We leverage this insight to design a novel heuristic for this problem outperforming the state-of-the-art. Our heuristic is also of independent interest for maximum clique detection and enumeration.



rate research

Read More

We initiate the study of fine-grained completeness theorems for exact and approximate optimization in the polynomial-time regime. Inspired by the first completeness results for decision problems in P (Gao, Impagliazzo, Kolokolova, Williams, TALG 2019) as well as the classic class MaxSNP and MaxSNP-completeness for NP optimization problems (Papadimitriou, Yannakakis, JCSS 1991), we define polynomial-time analogues MaxSP and MinSP, which contain a number of natural optimization problems in P, including Maximum Inner Product, general forms of nearest neighbor search and optimization variants of the $k$-XOR problem. Specifically, we define MaxSP as the class of problems definable as $max_{x_1,dots,x_k} #{ (y_1,dots,y_ell) : phi(x_1,dots,x_k, y_1,dots,y_ell) }$, where $phi$ is a quantifier-free first-order property over a given relational structure (with MinSP defined analogously). On $m$-sized structures, we can solve each such problem in time $O(m^{k+ell-1})$. Our results are: - We determine (a sparse variant of) the Maximum/Minimum Inner Product problem as complete under *deterministic* fine-grained reductions: A strongly subquadratic algorithm for Maximum/Minimum Inner Product would beat the baseline running time of $O(m^{k+ell-1})$ for *all* problems in MaxSP/MinSP by a polynomial factor. - This completeness transfers to approximation: Maximum/Minimum Inner Product is also complete in the sense that a strongly subquadratic $c$-approximation would give a $(c+varepsilon)$-approximation for all MaxSP/MinSP problems in time $O(m^{k+ell-1-delta})$, where $varepsilon > 0$ can be chosen arbitrarily small. Combining our completeness with~(Chen, Williams, SODA 2019), we obtain the perhaps surprising consequence that refuting the OV Hypothesis is *equivalent* to giving a $O(1)$-approximation for all MinSP problems in faster-than-$O(m^{k+ell-1})$ time.
144 - Ning Ding , Yulin Chen , Xu Han 2021
As an effective approach to tune pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using textit{cloze}-style language prompts to stimulate the versatile knowledge of PLMs, prompt-learning can achieve promising results on a series of NLP tasks, such as natural language inference, sentiment classification, and knowledge probing. In this work, we investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot and zero-shot scenarios. We first develop a simple and effective prompt-learning pipeline by constructing entity-oriented verbalizers and templates and conducting masked language modeling. Further, to tackle the zero-shot regime, we propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types. Extensive experiments on three fine-grained entity typing benchmarks (with up to 86 classes) under fully supervised, few-shot and zero-shot settings show that prompt-learning methods significantly outperform fine-tuning baselines, especially when the training data is insufficient.
Attention mechanism has demonstrated great potential in fine-grained visual recognition tasks. In this paper, we present a counterfactual attention learning method to learn more effective attention based on causal inference. Unlike most existing methods that learn visual attention based on conventional likelihood, we propose to learn the attention with counterfactual causality, which provides a tool to measure the attention quality and a powerful supervisory signal to guide the learning process. Specifically, we analyze the effect of the learned visual attention on network prediction through counterfactual intervention and maximize the effect to encourage the network to learn more useful attention for fine-grained image recognition. Empirically, we evaluate our method on a wide range of fine-grained recognition tasks where attention plays a crucial role, including fine-grained image categorization, person re-identification, and vehicle re-identification. The consistent improvement on all benchmarks demonstrates the effectiveness of our method. Code is available at https://github.com/raoyongming/CAL
Maintaining and updating shortest paths information in a graph is a fundamental problem with many applications. As computations on dense graphs can be prohibitively expensive, and it is preferable to perform the computations on a sparse skeleton of the given graph that roughly preserves the shortest paths information. Spanners and emulators serve this purpose. This paper develops fast dynamic algorithms for sparse spanner and emulator maintenance and provides evidence from fine-grained complexity that these algorithms are tight. Under the popular OMv conjecture, we show that there can be no decremental or incremental algorithm that maintains an $n^{1+o(1)}$ edge (purely additive) $+n^{delta}$-emulator for any $delta<1/2$ with arbitrary polynomial preprocessing time and total update time $m^{1+o(1)}$. Also, under the Combinatorial $k$-Clique hypothesis, any fully dynamic combinatorial algorithm that maintains an $n^{1+o(1)}$ edge $(1+epsilon,n^{o(1)})$-spanner or emulator must either have preprocessing time $mn^{1-o(1)}$ or amortized update time $m^{1-o(1)}$. Both of our conditional lower bounds are tight. As the above fully dynamic lower bound only applies to combinatorial algorithms, we also develop an algebraic spanner algorithm that improves over the $m^{1-o(1)}$ update time for dense graphs. For any constant $epsilonin (0,1]$, there is a fully dynamic algorithm with worst-case update time $O(n^{1.529})$ that whp maintains an $n^{1+o(1)}$ edge $(1+epsilon,n^{o(1)})$-spanner. Our new algebraic techniques and spanner algorithms allow us to also obtain (1) a new fully dynamic algorithm for All-Pairs Shortest Paths (APSP) with update and path query time $O(n^{1.9})$; (2) a fully dynamic $(1+epsilon)$-approximate APSP algorithm with update time $O(n^{1.529})$; (3) a fully dynamic algorithm for near-$2$-approximate Steiner tree maintenance.
Many real-world problems can be reduced to combinatorial optimization on a graph, where the subset or ordering of vertices that maximize some objective function must be found. With such tasks often NP-hard and analytically intractable, reinforcement learning (RL) has shown promise as a framework with which efficient heuristic methods to tackle these problems can be learned. Previous works construct the solution subset incrementally, adding one element at a time, however, the irreversible nature of this approach prevents the agent from revising its earlier decisions, which may be necessary given the complexity of the optimization task. We instead propose that the agent should seek to continuously improve the solution by learning to explore at test time. Our approach of exploratory combinatorial optimization (ECO-DQN) is, in principle, applicable to any combinatorial problem that can be defined on a graph. Experimentally, we show our method to produce state-of-the-art RL performance on the Maximum Cut problem. Moreover, because ECO-DQN can start from any arbitrary configuration, it can be combined with other search methods to further improve performance, which we demonstrate using a simple random search.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا