Mutation timing in a spatial model of evolution


Abstract in English

Motivated by models of cancer formation in which cells need to acquire $k$ mutations to become cancerous, we consider a spatial population model in which the population is represented by the $d$-dimensional torus of side length $L$. Initially, no sites have mutations, but sites with $i-1$ mutations acquire an $i$th mutation at rate $mu_i$ per unit area. Mutations spread to neighboring sites at rate $alpha$, so that $t$ time units after a mutation, the region of individuals that have acquired the mutation will be a ball of radius $alpha t$. We calculate, for some ranges of the parameter values, the asymptotic distribution of the time required for some individual to acquire $k$ mutations. Our results, which build on previous work of Durrett, Foo, and Leder, are essentially complete when $k = 2$ and when $mu_i = mu$ for all $i$.

Download