Do you want to publish a course? Click here

Minimization Problems on Strictly Convex Divergences

73   0   0.0 ( 0 )
 Added by Tomohiro Nishiyama
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The divergence minimization problem plays an important role in various fields. In this note, we focus on differentiable and strictly convex divergences. For some minimization problems, we show the minimizer conditions and the uniqueness of the minimizer without assuming a specific form of divergences. Furthermore, we show geometric properties related to the minimization problems.



rate research

Read More

Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative $alpha$-entropies (denoted $mathscr{I}_{alpha}$), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative $alpha$-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative $alpha$-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum R{e}nyi or Tsallis entropy principle. The minimizing probability distribution (termed forward $mathscr{I}_{alpha}$-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse $mathscr{I}_{alpha}$-projection is studied.
110 - James Melbourne 2020
We consider a sub-class of the $f$-divergences satisfying a stronger convexity property, which we refer to as strongly convex, or $kappa$-convex divergences. We derive new and old relationships, based on convexity arguments, between popular $f$-divergences.
We consider the minimization problem of $phi$-divergences between a given probability measure $P$ and subsets $Omega$ of the vector space $mathcal{M}_mathcal{F}$ of all signed finite measures which integrate a given class $mathcal{F}$ of bounded or unbounded measurable functions. The vector space $mathcal{M}_mathcal{F}$ is endowed with the weak topology induced by the class $mathcal{F}cup mathcal{B}_b$ where $mathcal{B}_b$ is the class of all bounded measurable functions. We treat the problems of existence and characterization of the $phi$-projections of $P$ on $Omega$. We consider also the dual equality and the dual attainment problems when $Omega$ is defined by linear constraints.
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted $mathscr{I}_{alpha}$) were studied. Such minimizers were called forward $mathscr{I}_{alpha}$-projections. Here, a complementary class of minimization problems leading to the so-called reverse $mathscr{I}_{alpha}$-projections are studied. Reverse $mathscr{I}_{alpha}$-projections, particularly on log-convex or power-law families, are of interest in robust estimation problems ($alpha >1$) and in constrained compression settings ($alpha <1$). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse $mathscr{I}_{alpha}$-projection into a forward $mathscr{I}_{alpha}$-projection. The transformed problem is a simpler quasiconvex minimization subject to linear constraints.
Nowadays data compressors are applied to many problems of text analysis, but many such applications are developed outside of the framework of mathematical statistics. In this paper we overcome this obstacle and show how several methods of classical mathematical statistics can be developed based on applications of the data compressors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا