Do you want to publish a course? Click here

Improved non-adaptive algorithms for threshold group testing with a gap

78   0   0.0 ( 0 )
 Added by Thach V. Bui
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The basic goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. The outcome of a test on a subset of items is positive if the subset has at least $u$ defective items, negative if it has up to $ell$ defective items, where $0leqell<u$, and arbitrary otherwise. This is called threshold group testing. The parameter $g=u-ell-1$ is called textit{the gap}. In this paper, we focus on the case $g>0$, i.e., threshold group testing with a gap. Note that the results presented here are also applicable to the case $g = 0$; however, the results are not as efficient as those in related work. Currently, a few reported studies have investigated test designs and decoding algorithms for identifying defective items. Most of the previous studies have not been feasible because there are numerous constraints on their problem settings or the decoding complexities of their proposed schemes are relatively large. Therefore, it is compulsory to reduce the number of tests as well as the decoding complexity, i.e., the time for identifying the defective items, for achieving practical schemes. The work presented here makes five contributions. The first is a more accurate theorem for a non-adaptive algorithm for threshold group testing proposed by Chen and Fu. The second is an improvement in the construction of disjunct matrices, which are the main tools for tackling (threshold) group testing and other tasks such as constructing cover-free families or learning hidden graphs. The third and fourth contributions are a reduced exact upper bound on the number of tests and a reduced asymptotic bound on the decoding time for identifying defective items in a noisy setting on test outcomes. The fifth contribution is a simulation on the number of tests of the resulting improvements for previous work and the proposed theorems.



rate research

Read More

The goal of group testing is to efficiently identify a few specific items, called positives, in a large population of items via tests. A test is an action on a subset of items which returns positive if the subset contains at least one positive and negative otherwise. In non-adaptive group testing, all tests are independent, can be performed in parallel and represented as a measurement matrix. In this work, we consider non-adaptive group testing with consecutive positives in which the items are linearly ordered and the positives are consecutive in that order. We proposed two improved algorithms for efficiently identifying consecutive positives. In particular, without storing measurement matrices, we can identify up to $d$ consecutive positives with $2 log_2{frac{n}{d}} + 2d$ ($4 log_2{frac{n}{d}} + 2d$, resp.) tests in $O left( log_2^2{frac{n}{d}} + d right)$ ($O left( log_2{frac{n}{d}} + d right)$, resp.) time. These results significantly improve the state-of-the-art scheme in which it takes $5 log_2{frac{n}{d}} + 2d + 21$ tests to identify the positives in $O left( frac{n}{d} log_2{frac{n}{d}} + d^2 right)$ time with the measurement matrices associated with the scheme stored somewhere.
The goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. A test is positive if it has at least $u$ defective items and negative otherwise. Our objective is to identify defective items in sublinear time the number of items, e.g., $mathrm{poly}(d, ln{n}),$ by using the number of tests as low as possible. In this paper, we reduce the number of tests to $O left( h times frac{d^2 ln^2{n}}{mathsf{W}^2(d ln{n})} right)$ and the decoding time to $O left( mathrm{dec}_0 times h right),$ where $mathrm{dec}_0 = O left( frac{d^{3.57} ln^{6.26}{n}}{mathsf{W}^{6.26}(d ln{n})} right) + O left( frac{d^6 ln^4{n}}{mathsf{W}^4(d ln{n})} right)$, $h = Oleft( frac{d_0^2 ln{frac{n}{d_0}}}{(1-p)^2} right)$ , $d_0 = max{u, d - u }$, $p in [0, 1),$ and $mathsf{W}(x) = Theta left( ln{x} - ln{ln{x}} right).$ If the number of tests is increased to $Oleft( h times frac{d^2ln^3{n}}{mathsf{W}^2(d ln{n})} right),$ the decoding complexity is reduced to $O left(mathrm{dec}_1 times h right),$ where $mathrm{dec}_1 = max left{ frac{d^2 ln^3{n}}{mathsf{W}^2(d ln{n})}, frac{ud ln^4{n}}{mathsf{W}^3(d ln{n})} right}.$ Moreover, our proposed scheme is capable of handling errors in test outcomes.
We consider non-adaptive threshold group testing for identification of up to $d$ defective items in a set of $n$ items, where a test is positive if it contains at least $2 leq u leq d$ defective items, and negative otherwise. The defective items can be identified using $t = O left( left( frac{d}{u} right)^u left( frac{d}{d - u} right)^{d-u} left(u log{frac{d}{u}} + log{frac{1}{epsilon}} right) cdot d^2 log{n} right)$ tests with probability at least $1 - epsilon$ for any $epsilon > 0$ or $t = O left( left( frac{d}{u} right)^u left( frac{d}{d -u} right)^{d - u} d^3 log{n} cdot log{frac{n}{d}} right)$ tests with probability 1. The decoding time is $t times mathrm{poly}(d^2 log{n})$. This result significantly improves the best known results for decoding non-adaptive threshold group testing: $O(nlog{n} + n log{frac{1}{epsilon}})$ for probabilistic decoding, where $epsilon > 0$, and $O(n^u log{n})$ for deterministic decoding.
Identification of up to $d$ defective items and up to $h$ inhibitors in a set of $n$ items is the main task of non-adaptive group testing with inhibitors. To efficiently reduce the cost of this Herculean task, a subset of the $n$ items is formed and then tested. This is called textit{group testing}. A test outcome on a subset of items is positive if the subset contains at least one defective item and no inhibitors, and negative otherwise. We present two decoding schemes for efficiently identifying the defective items and the inhibitors in the presence of $e$ erroneous outcomes in time $mathsf{poly}(d, h, e, log_2{n})$, which is sublinear to the number of items $n$. This decoding complexity significantly improves the state-of-the-art schemes in which the decoding time is linear to the number of items $n$, i.e., $mathsf{poly}(d, h, e, n)$. Moreover, each column of the measurement matrices associated with the proposed schemes can be nonrandomly generated in polynomial order of the number of rows. As a result, one can save space for storing them. Simulation results confirm our theoretical analysis. When the number of items is sufficiently large, the decoding time in our proposed scheme is smallest in comparison with existing work. In addition, when some erroneous outcomes are allowed, the number of tests in the proposed scheme is often smaller than the number of tests in existing work.
Semiquantitative group testing (SQGT) is a pooling method in which the test outcomes represent bounded intervals for the number of defectives. Alternatively, it may be viewed as an adder channel with quantized outputs. SQGT represents a natural choice for Covid-19 group testing as it allows for a straightforward interpretation of the cycle threshold values produced by polymerase chain reactions (PCR). Prior work on SQGT did not address the need for adaptive testing with a small number of rounds as required in practice. We propose conceptually simple methods for 2-round and nonadaptive SQGT that significantly improve upon existing schemes by using ideas on nonbinary measurement matrices based on expander graphs and list-disjunct matrices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا