Do you want to publish a course? Click here

Ondr}ejov echelle spectrograph, ground based support facility for exoplanet missions

295   0   0.0 ( 0 )
 Added by Petr Kabath
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fulfilling the goals of space-based exoplanetary transit surveys, like Kepler and TESS, is impossible without ground-based spectroscopic follow-up. In particular, the first-step vetting of candidates could easily necessitate several hundreds of hours of telescope time -- an area where 2-m class telescopes can play a crucial role. Here, we describe the results from the science verification of the Ondv{r}ejov Echelle Spectrograph (OES) installed on the 2-m Perek telescope. We discuss the performance of the instrument as well as its suitability for the study of exoplanetary candidates from space-based transit surveys. In spite of being located at an average European observing site, and originally being conceived for the study of variable stars, OES can prove to be an important instrument for the exoplanetary community in the TESS and PLATO era -- reaching accuracies of a few tens of m/s with reasonable sampling and signal-to-noise for sources down to V$sim$13. The stability of OES is demonstrated via long-term monitoring of the standard star HD~109358, while its validity for exoplanetary candidate verification is shown using three K2 candidates EPIC~210925707, EPIC~206135267 and EPIC~211993818, to reveal that they are false positive detections.

rate research

Read More

Future space-based direct imaging missions are poised to search for biosignatures in the atmospheres of potentially habitable planets orbiting nearby AFGKM stars. Although these missions could conduct a survey of high-priority target stars to detect candidate Earth-like planets, conducting a precursor radial velocity (RV) survey will benefit future direct imaging missions in four ways. First, an RV survey capable of detecting signals as small as 8 cm/s over timescales of a few years could discover potentially habitable Earth-mass planets orbiting dozens of nearby GKM stars accessible to space-based direct imaging. Second, RVs will improve scheduling efficiency by reducing the required number of revisits for orbit determination, and revealing when a planet of interest is most observable. Third, RV observations will reveal the masses of gas and ice giants that could be mistaken for Earth-mass planets, thereby reducing the time spent identifying false positives. Fourth, mass measurements from RVs will provide the surface gravities necessary for interpreting atmospheric spectra and potential biosignatures.
Instrumentation techniques in the field of direct imaging of exoplanets have greatly advanced over the last two decades. Two of the four NASA-commissioned large concept studies involve a high-contrast instrument for the imaging and spectral characterization of exo-Earths from space: LUVOIR and HabEx. This whitepaper describes the status of 8 optical testbeds in the US and France currently in operation to experimentally validate the necessary technologies to image exo-Earths from space. They explore two complementary axes of research: (i) coronagraph designs and manufacturing and (ii) active wavefront correction methods and technologies. Several instrument architectures are currently being analyzed in parallel to provide more degrees of freedom for designing the future coronagraphic instruments. The necessary level of performance has already been demonstrated in-laboratory for clear off-axis telescopes (HabEx-like) and important efforts are currently in development to reproduce this accomplishment on segmented and/or on-axis telescopes (LUVOIR-like) over the next two years.
We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new instrument built at the Centro Astronomico Hispano Aleman (CAHA). CAFE is a single fiber, high-resolution ($Rsim$70000) spectrograph, covering the wavelength range between 3650-9800AA. It was built on the basis of the common design for Echelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to $Vsim$13-14 mag with a precision as good as a few tens of $m s^{-1}$. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, so the wavelentgth coverage; no filter wheel, one slit and so on, with a particular care taken in the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the reduction pipeline; and (iv) show the results from the first light and commissioning runs. The preliminar results indicate that the instrument fulfill the specifications and it can achieve the foreseen goals. In particular, they show that the instrument is more efficient than anticipated, reaching a $S/Nsim$20 for a stellar object as faint as $Vsim$14.5 mag in $sim$2700s integration time. The instrument is a wonderful machine for exoplanetary research (by studying large samples of possible systems cotaining massive planets), galactic dynamics (high precise radial velocities in moving groups or stellar associations) or astrochemistry.
68 - I.J.M. Crossfield 2016
The study of extrasolar planets has rapidly expanded to encompass the search for new planets, measurements of sizes and masses, models of planetary interiors, planetary demographics and occurrence frequencies, the characterization of planetary orbits and dynamics, and studies of these worlds complex atmospheres. Our insights into exoplanets dramatically advance whenever improved tools and techniques become available, and surely the largest tools now being planned are the optical/infrared Extremely Large Telescopes (ELTs). Two themes summarize the advantages of atmospheric studies with the ELTs: high angular resolution when operating at the diffraction limit and high spectral resolution enabled by the unprecedented collecting area of these large telescopes. This brief review describes new opportunities afforded by the ELTs to study the composition, structure, dynamics, and evolution of these planets atmospheres, while specifically focusing on some of the most compelling atmospheric science cases for four qualitatively different planet populations: highly irradiated gas giants, young, hot giant planets, old, cold gas giants, and small planets and Earth analogs.
PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3kx10.3k CCDs with 9-{mu}m pixels and peak quantum efficiencies of 96 % record a total of 92 echelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15% at 650 nm, and still 11% and 10% at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of 20th mag in V in the low-resolution mode. The R=120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100- {mu}m fibre through a projected sky aperture of 0.74, comparable to the median seeing of the LBT site. The 43000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Perot etalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا