Supersymmetric traversable wormholes


Abstract in English

We study traversable wormhole solutions in pure gauged $N!=!2$ supergravity with and without electromagnetic fields, which are locally isometric under $mathrm{SO}(2,1)!times!mathrm{SO}(1,1)$. The model allows for 1/2-BPS wormhole solutions whose corresponding globally defined Killing spinors are presented. A non-contractible cycle can be obtained by compactifying one of the coordinates which leaves the residual supersymmetry unaffected, the isometry group is now globally $mathrm{SO}(2,1)!times!mathrm{SO}(2)$. The wormholes connect two asymptotic, locally $mathrm{AdS}_4$ regions and depend on certain electric and magnetic charge parameters and, implicitly, on the range of the compact coordinate around the throat. We provide an analysis of the boundary of the spacetime and show that it can be either disconnected or not, depending on the values of the parameters in the metric. Finally, we show how that these space-times avoid a topological censorship theorem.

Download