No Arabic abstract
Aims: The inner regions of high-mass protostars are often invisible in the near-infrared. We aim to investigate the inner gaseous disc of IRAS11101-5829 through scattered light from the outflow cavity walls. Methods: We observed the environment of the high-mass young stellar object IRAS11101-5829 and the closest knots of its jet, HH135-136, with the VLT/SINFONI. We also retrieved archival data from the high-resolution long-slit spectrograph VLT/X-shooter. Results: We detect the first three bandheads of the $upsilon=2-0$ CO vibrational emission for the first time in this object. It is coincident with continuum and Br$gamma$ emission and extends up to $sim10000$ au to the north-east and $sim10 000$ au to the south-west. The line profiles have been modelled as a Keplerian rotating disc assuming a single ring in LTE. The model output gives a temperature of $sim3000$ K, a CO column density of $sim1times10^{22}mathrm{ cm^{-2}}$, and a projected Keplerian velocity $v_mathrm{K}sin i_mathrm{disc} sim 25mathrm{ km s^{-1}}$, which is consistent with previous modelling in other high-mass protostars. In particular, the low value of $v_mathrm{K}sin i_mathrm{disc}$ suggests that the disc is observed almost face-on, whereas the well-constrained geometry of the jet imposes that the disc must be close to edge-on. This apparent discrepancy is interpreted as the CO seen reflected in the mirror of the outflow cavity wall. Conclusions: From both jet geometry and disc modelling, we conclude that all the CO emission is seen through reflection by the cavity walls and not directly. This result implies that in the case of highly embedded objects, as for many high-mass protostars, line profile modelling alone might be deceptive and the observed emission could affect the derived physical and geometrical properties; in particular the inclination of the system can be incorrectly interpreted.
To probe the circumstellar environment of IRAS 13481-6124, a 20 M_sun high-mass young stellar object (HMYSO) with a parsec-scale jet and accretion disc, we investigate the origin of its Brgamma-emission line through NIR interferometry. We present the first AMBER/VLTI observations of the Brgamma-emitting region in an HMYSO at R~1500. Our AMBER/VLTI observations reveal a spatially and spectrally resolved Brgamma-line in emission with a strong P Cygni profile, indicating outflowing matter with a terminal velocity of ~500 km/s. Visibilities, differential phases, and closure phases are detected in our observations within the spectral line and in the adjacent continuum. Both total visibilities (continuum plus line emitting region) and pure-line visibilities indicate that the Brgamma-emitting region is more compact (2-4 mas in diameter or ~6-13 au at 3.2 kpc) than the continuum-emitting region (~5.4 mas or ~17 au). The absorption feature is also spatially resolved at the longest baselines (81 and 85 m) and has a visibility that is slightly smaller than the continuum-emitting region. The differential phases at the four longest baselines display an u2018Su2019-shaped structure across the line, peaking in the blue- and red-shifted high-velocity components. The calibrated photocentre shifts are aligned with the known jet axis, i.e they are probably tracing an ionised jet. The high-velocity components (v_r~100-500 km/s) are located far from the source, whereas the low-velocity components (0-100 km/s) are observed to be closer, indicating a strong acceleration of the gas flow in the inner 10 au. Finally, a non-zero closure phase along the continuum is detected. By comparing our observations with the synthetic images of the continuum around 2.16 um, we confirm that this feature originates from the asymmetric brightness distribution of the continuum owing to the inclination of the inner disc.
The inner regions of the discs of high-mass young stellar objects (HMYSOs) are still poorly known due to the small angular scales and the high visual extinction involved. We deploy near-infrared (NIR) spectro-interferometry to probe the inner gaseous disc in HMYSOs and investigate the origin and physical characteristics of the CO bandhead emission (2.3-2.4 $mu$m). We present the first GRAVITY/VLTI observations at high spectral (R=4000) and spatial (mas) resolution of the CO overtone transitions in NGC 2024 IRS2. The continuum emission is resolved in all baselines and is slightly asymmetric, displaying small closure phases ($leq$8$^{circ}$). Our best ellipsoid model provides a disc inclination of 34$^{circ}$$pm$1$^{circ}$, a disc major axis position angle of 166$^{circ}$$pm$1$^{circ}$, and a disc diameter of 3.99$pm$0.09 mas (or 1.69$pm$0.04 au, at a distance of 423 pc). The small closure phase signals in the continuum are modelled with a skewed rim, originating from a pure inclination effect. For the first time, our observations spatially and spectrally resolve the first four CO bandheads. Changes in visibility, as well as differential and closure phases across the bandheads are detected. Both the size and geometry of the CO-emitting region are determined by fitting a bidimensional Gaussian to the continuum-compensated CO bandhead visibilities. The CO-emitting region has a diameter of 2.74$pm^{0.08}_{0.07}$ mas (1.16$pm$0.03 au), and is located in the inner gaseous disc, well within the dusty rim, with inclination and $PA$ matching the dusty disc geometry, which indicates that both dusty and gaseous discs are coplanar. Physical and dynamical gas conditions are inferred by modelling the CO spectrum. Finally, we derive a direct measurement of the stellar mass of $M_*sim$14.7$^{+2}_{-3.6}$ M$_{odot}$ by combining our interferometric and spectral modelling results.
To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead) emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates ($gtrsim 10^{-4},{rm M}_{odot}{mathrm{yr}}^{-1}$) result in large dust sublimation radii, a larger contribution to the $K$-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates ($lesssim10^{-6},{rm M}_{odot}{mathrm{yr}}^{-1}$) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.
Aims: We aim to understand the star formation associated with the luminous young stellar object (YSO) IRAS 18345-0641 and to address the complications arising from unresolved multiplicity in interpreting the observations of massive star-forming regions. Methods: New infrared imaging data at sub-arcsec spatial resolution are obtained for IRAS 18345-0641. The new data are used along with mid- and far-IR imaging data, and CO (J=3-2) spectral line maps downloaded from archives to identify the YSO and study the properties of the outflow. Available radiative-transfer models are used to analyze the spectral energy distribution (SED) of the YSO. Results: Previous tentative detection of an outflow in the H_2 (1-0) S1 line (2.122 micron) is confirmed through new and deeper observations. The outflow appears to be associated with a YSO discovered at infrared wavelengths. At high angular resolution, we see that the YSO is probably a binary. The CO (3--2) lines also reveal a well defined outflow. Nevertheless, the direction of the outflow deduced from the H_2 image does not agree with that mapped in CO. In addition, the age of the YSO obtained from the SED analysis is far lower than the dynamical time of the outflow. We conclude that this is probably caused by the contributions from a companion. High-angular-resolution observations at mid-IR through mm wavelengths are required to properly understand the complex picture of the star formation happening in this system, and generally in massive star forming regions, which are located at large distances from us.
We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H2-13CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H2 knot from the jet at about 800-1000 au from the protostar. This is especially clear in the case of H2-13CO and CH3OCH3. We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for about 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow.