No Arabic abstract
In light of recent interest in Hadamard diagonalisable graphs (graphs whose Laplacian matrix is diagonalisable by a Hadamard matrix), we generalise this notion from real to complex Hadamard matrices. We give some basic properties and methods of constructing such graphs. We show that a large class of complex Hadamard diagonalisable graphs have vertex sets forming an equitable partition, and that the Laplacian eigenvalues must be even integers. We provide a number of examples and constructions of complex Hadamard diagonalisable graphs, including two special classes of graphs: the Cayley graphs over $mathbb{Z}_r^d$, and the non--complete extended $p$--sum (NEPS). We discuss necessary and sufficient conditions for $(alpha, beta)$--Laplacian fractional revival and perfect state transfer on continuous--time quantum walks described by complex Hadamard diagonalisable graphs and provide examples of such quantum state transfer.
We study the circulant complex Hadamard matrices of order $n$ whose entries are $l$-th roots of unity. For $n=l$ prime we prove that the only such matrix, up to equivalence, is the Fourier matrix, while for $n=p+q,l=pq$ with $p,q$ distinct primes there is no such matrix. We then provide a list of equivalence classes of such matrices, for small values of $n,l$.
If the Laplacian matrix of a graph has a full set of orthogonal eigenvectors with entries $pm1$, then the matrix formed by taking the columns as the eigenvectors is a Hadamard matrix and the graph is said to be Hadamard diagonalizable. In this article, we prove that if $n=8k+4$ the only possible Hadamard diagonalizable graphs are $K_n$, $K_{n/2,n/2}$, $2K_{n/2}$, and $nK_1$, and we develop an efficient computation for determining all graphs diagonalized by a given Hadamard matrix of any order. Using these two tools, we determine and present all Hadamard diagonalizable graphs up to order 36. Note that it is not even known how many Hadamard matrices there are of order 36.
In this paper, we generalize classical constructions of skew Hadamard difference families with two or four blocks in the additive groups of finite fields given by Szekeres (1969, 1971), Whiteman (1971) and Wallis-Whiteman (1972). In particular, we show that there exists a skew Hadamard difference family with $2^{u-1}$ blocks in the additive group of the finite field of order $q^e$ for any prime power $qequiv 2^u+1,({mathrm{mod, , }2^{u+1}})$ with $uge 2$ and any positive integer $e$. In the aforementioned work of Szekeres, Whiteman, and Wallis-Whiteman, the constructions of skew Hadamard difference families with $2^{u-1}$ ($u=2$ or $3$) blocks in $({mathbb F}_{q^e},+)$ depend on the exponent $e$, with $eequiv 1,2,$ or $3,({mathrm{mod, , }4})$ when $u=2$, and $eequiv 1,({mathrm{mod, , }2})$ when $u=3$, respectively. Our more general construction, in particular, removes the dependence on $e$. As a consequence, we obtain new infinite families of skew Hadamard matrices.
In this paper, we give a construction of strongly regular Cayley graphs and a construction of skew Hadamard difference sets. Both constructions are based on choosing cyclotomic classes in finite fields, and they generalize the constructions given by Feng and Xiang cite{FX111,FX113}. Three infinite families of strongly regular graphs with new parameters are obtained. The main tools that we employed are index 2 Gauss sums, instead of cyclotomic numbers.
A complex unit gain graph is a graph where each orientation of an edge is given a complex unit, which is the inverse of the complex unit assigned to the opposite orientation. We extend some fundamental concepts from spectral graph theory to complex unit gain graphs. We define the adjacency, incidence and Laplacian matrices, and study each of them. The main results of the paper are eigenvalue bounds for the adjacency and Laplacian matrices.