Do you want to publish a course? Click here

Approximating Text-to-Pattern Hamming Distances

77   0   0.0 ( 0 )
 Added by Tomasz Kociumaka
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We revisit a fundamental problem in string matching: given a pattern of length m and a text of length n, both over an alphabet of size $sigma$, compute the Hamming distance between the pattern and the text at every location. Several $(1+epsilon)$-approximation algorithms have been proposed in the literature, with running time of the form $O(epsilon^{-O(1)}nlog nlog m)$, all using fast Fourier transform (FFT). We describe a simple $(1+epsilon)$-approximation algorithm that is faster and does not need FFT. Combining our approach with additional ideas leads to numerous new results: - We obtain the first linear-time approximation algorithm; the running time is $O(epsilon^{-2}n)$. - We obtain a faster exact algorithm computing all Hamming distances up to a given threshold k; its running time improves previous results by logarithmic factors and is linear if $klesqrt m$. - We obtain approximation algorithms with better $epsilon$-dependence using rectangular matrix multiplication. The time-bound is $~O(n)$ when the pattern is sufficiently long: $mge epsilon^{-28}$. Previous algorithms require $~O(epsilon^{-1}n)$ time. - When k is not too small, we obtain a truly sublinear-time algorithm to find all locations with Hamming distance approximately (up to a constant factor) less than k, in $O((n/k^{Omega(1)}+occ)n^{o(1)})$ time, where occ is the output size. The algorithm leads to a property tester, returning true if an exact match exists and false if the Hamming distance is more than $delta m$ at every location, running in $~O(delta^{-1/3}n^{2/3}+delta^{-1}n/m)$ time. - We obtain a streaming algorithm to report all locations with Hamming distance approximately less than k, using $~O(epsilon^{-2}sqrt k)$ space. Previously, streaming algorithms were known for the exact problem with ~O(k) space or for the approximate problem with $~O(epsilon^{-O(1)}sqrt m)$ space.



rate research

Read More

We consider several types of internal queries: questions about subwords of a text. As the main tool we develop an optimal data structure for the problem called here internal pattern matching. This data structure provides constant-time answers to queries about occurrences of one subword $x$ in another subword $y$ of a given text, assuming that $|y|=mathcal{O}(|x|)$, which allows for a constant-space representation of all occurrences. This problem can be viewed as a natural extension of the well-studied pattern matching problem. The data structure has linear size and admits a linear-time construction algorithm. Using the solution to the internal pattern matching problem, we obtain very efficient data structures answering queries about: primitivity of subwords, periods of subwords, general substring compression, and cyclic equivalence of two subwords. All these results improve upon the best previously known counterparts. The linear construction time of our data structure also allows to improve the algorithm for finding $delta$-subrepetitions in a text (a more general version of maximal repetitions, also called runs). For any fixed $delta$ we obtain the first linear-time algorithm, which matches the linear time complexity of the algorithm computing runs. Our data structure has already been used as a part of the efficient solutions for subword suffix rank & selection, as well as substring compression using Burrows-Wheeler transform composed with run-length encoding.
We study the problem of approximating the largest root of a real-rooted polynomial of degree $n$ using its top $k$ coefficients and give nearly matching upper and lower bounds. We present algorithms with running time polynomial in $k$ that use the top $k$ coefficients to approximate the maximum root within a factor of $n^{1/k}$ and $1+O(tfrac{log n}{k})^2$ when $kleq log n$ and $k>log n$ respectively. We also prove corresponding information-theoretic lower bounds of $n^{Omega(1/k)}$ and $1+Omegaleft(frac{log frac{2n}{k}}{k}right)^2$, and show strong lower bounds for noisy version of the problem in which one is given access to approximate coefficients. This problem has applications in the context of the method of interlacing families of polynomials, which was used for proving the existence of Ramanujan graphs of all degrees, the solution of the Kadison-Singer problem, and bounding the integrality gap of the asymmetric traveling salesman problem. All of these involve computing the maximum root of certain real-rooted polynomials for which the top few coefficients are accessible in subexponential time. Our results yield an algorithm with the running time of $2^{tilde O(sqrt[3]n)}$ for all of them.
We consider the problem of computing a $(1+epsilon)$-approximation of the Hamming distance between a pattern of length $n$ and successive substrings of a stream. We first look at the one-way randomised communication complexity of this problem, giving Alice the first half of the stream and Bob the second half. We show the following: (1) If Alice and Bob both share the pattern then there is an $O(epsilon^{-4} log^2 n)$ bit randomised one-way communication protocol. (2) If only Alice has the pattern then there is an $O(epsilon^{-2}sqrt{n}log n)$ bit randomised one-way communication protocol. We then go on to develop small space streaming algorithms for $(1+epsilon)$-approximate Hamming distance which give worst case running time guarantees per arriving symbol. (1) For binary input alphabets there is an $O(epsilon^{-3} sqrt{n} log^{2} n)$ space and $O(epsilon^{-2} log{n})$ time streaming $(1+epsilon)$-approximate Hamming distance algorithm. (2) For general input alphabets there is an $O(epsilon^{-5} sqrt{n} log^{4} n)$ space and $O(epsilon^{-4} log^3 {n})$ time streaming $(1+epsilon)$-approximate Hamming distance algorithm.
We describe a new statistical test for pseudorandom number generators (PRNGs). Our test can find bias induced by dependencies among the Hamming weights of the outputs of a PRNG, even for PRNGs that pass state-of-the-art tests of the same kind from the literature, and in particular for generators based on F_2-linear transformations such as the dSFMT, xoroshiro128+, and WELL512.
We show tight bounds for online Hamming distance computation in the cell-probe model with word size w. The task is to output the Hamming distance between a fixed string of length n and the last n symbols of a stream. We give a lower bound of Omega((d/w)*log n) time on average per output, where d is the number of bits needed to represent an input symbol. We argue that this bound is tight within the model. The lower bound holds under randomisation and amortisation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا