Do you want to publish a course? Click here

Spin-polarized electron transmission in DNA-like systems

74   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The helical distribution of the electronic density in chiral molecules, such as DNA and bacteriorhodopsin, has been suggested to induce a spin-orbit coupling interaction that may lead to the so-called chirality-induced spin selectivity (CISS) effect. Key ingredients for the theoretical modelling are, in this context, the helically shaped potential of the molecule and, concomitantly, a Rashba-like spin-orbit coupling due to the appearance of a magnetic field in the electron reference frame. Symmetries of these models clearly play a crucial role in explaining the observed effect, but a thorough analysis has been largely ignored in the literature. In this work, we present a study of these symmetries and how they can be exploited to enhance chiral-induced spin selectivity in helical molecular systems.



rate research

Read More

The chirality-induced spin selectivity (CISS), demonstrated in diverse chiral molecules by numerous experimental and theoretical groups, has been attracting extensive and ongoing interest in recent years. As the secondary structure of DNA, the charge transfer along DNA hairpins has been widely studied for more than two decades, finding that DNA hairpins exhibit spin-related effects as reported in recent experiments. Here, we propose a setup to demonstrate directly the CISS effect in DNA hairpins contacted by two nonmagnetic leads at both ends of the stem. Our results indicate that DNA hairpins present pronounced CISS effect and the spin polarization could be enhanced by using conducting molecules as the loop. In particular, DNA hairpins show several intriguing features, which are different from other chiral molecules. First, the local spin currents can flow circularly and assemble into a number of vortex clusters when the electron energy locates in the left/right electronic band of the stem. The chirality of vortex clusters in each band is the same and will be reversed by switching the electron energy from the left band to the right one, inducing the sign reversal of the spin polarization. Interestingly, the local spin currents can be greater than the corresponding spin component of the source-drain current. Second, both the conductance and the spin polarization can increase with molecular length as well as dephasing strength, contrary to the physical intuition that the transmission ability of molecular wires should be poorer when suffering from stronger scattering. Third, we unveil the optimal contact configuration of efficient electron transport and that of the CISS effect, which are distinct from each other and can be controlled by dephasing strength. The underlying physical mechanism is illustrated.
Electron transfer (ET) in biological molecules such as peptides and proteins consists of electrons moving between well defined localized states (donors to acceptors) through a tunneling process. Here we present an analytical model for ET by tunneling in DNA, in the presence of Spin-Orbit (SO) interaction, to produce a strong spin asymmetry with the intrinsic atomic SO strength in meV range. We obtain a Hamiltonian consistent with charge transport through $pi$ orbitals on the DNA bases and derive the behavior of ET as a function of the injection state momentum, the spin-orbit coupling and barrier length and strength. A highly consistent scenario arises where two concomitant mechanisms for spin selection arises; spin interference and differential spin amplitude decay. High spin filtering can take place at the cost of reduced amplitude transmission assuming realistic values for the spin-orbit coupling. The spin filtering scenario is completed by addressing the spin dependent torque under the barrier, with a consistent conserved definition for the spin current.
Collective charge-density modes (plasmons) of the clean two-dimensional unpolarized electron gas are stable, for momentum conservation prevents them from decaying into single-particle excitations. Collective spin-density modes (spin plasmons) possess no similar protection and rapidly decay by production of electron-hole pairs. Nevertheless, if the electron gas has a sufficiently high degree of spin polarization ($P>1/7$, where $P$ is the ratio of the equilibrium spin density and the total electron density, for a parabolic single-particle spectrum) we find that a long-lived spin-plasmon---a collective mode in which the densities of up and down spins oscillate with opposite phases---can exist within a pseudo gap of the single-particle excitation spectrum. The ensuing collectivization of the spin excitation spectrum is quite remarkable and should be directly visible in Raman scattering experiments. The predicted mode could dramatically improve the efficiency of coupling between spin-wave-generating devices, such as spin-torque oscillators.
We present a method to create spin-polarized beams of ballistic electrons in a two-dimensional electron system in the presence of spin-orbit interaction. Scattering of a spin-unpolarized injected beam from a lithographic barrier leads to the creation of two fully spin-polarized side beams, in addition to an unpolarized specularly reflected beam. Experimental magnetotransport data on InSb/InAlSb heterostructures demonstrate the spin-polarized reflection in a mesoscopic geometry, and confirm our theoretical predictions.
184 - Gun Sang Jeon , M.Y. Choi , 1996
We investigate the density of states (DOS) near the Fermi energy of one-dimensional spin-polarized electron systems in the quantum regime where the localization length is comparable to or larger than the inter-particle distance. The Wigner lattice gap of such a system, in the presence of weak disorder, can occur precisely at the Fermi energy, coinciding with the Coulomb gap in position. The interplay between the two is investigated by treating the long-range Coulomb interaction and the random disorder potential in a self-consistent Hartree-Fock approximation. The DOS near the Fermi energy is found to be well described by a power law whose exponent decreases with increasing disorder strength.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا