No Arabic abstract
Useful information can be retrieved by analysing the transit light curve of a planet-hosting star or induced radial velocity oscillations. However, inferring the physical parameters of the planet, such as mass, size, and semi-major axis, requires preliminary knowledge of some parameters of the host star, especially its mass or radius, which are generally inferred through theoretical evolutionary models. We seek to present and test a whole algorithm devoted to the complete characterisation of an exoplanetary system thanks to the global analysis of photometric or radial velocity time series combined with observational stellar parameters derived either from spectroscopy or photometry. We developed an integrated tool called MCMCI. This tool combines the Markov chain Monte Carlo (MCMC) approach of analysing photometric or radial velocity time series with a proper interpolation within stellar evolutionary isochrones and tracks, known as isochrone placement, to be performed at each chain step, to retrieve stellar theoretical parameters such as age, mass, and radius. We tested the MCMCI on the HD 219134 multi-planetary system hosting two transiting rocky super Earths and on WASP-4, which hosts a bloated hot Jupiter. Even considering different input approaches, a final convergence was reached within the code, we found good agreement with the results already stated in the literature and we obtained more precise output parameters, especially concerning planetary masses. The MCMCI tool offers the opportunity to perform an integrated analysis of an exoplanetary system without splitting it into the preliminary stellar characterisation through theoretical models. Rather this approach favours a close interaction between light curve analysis and isochrones, so that the parameters recovered at each step of the MCMC enter as inputs for purposes of isochrone placement.
We measure a tilt of 86+-6 deg between the sky projections of the rotation axis of the WASP-7 star, and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Finder Spectrograph on the Magellan II telescope. The result conforms with the previously noted pattern among hot-Jupiter hosts, namely, that the hosts lacking thick convective envelopes have high obliquities. Because the planets trajectory crosses a wide range of stellar latitudes, observations of the RM effect can in principle reveal the stellar differential rotation profile; however, with the present data the signal of differential rotation could not be detected. The host star is found to exhibit radial-velocity noise (``stellar jitter) with an amplitude of ~30m/s over a timescale of days.
Close-in planets evolve under extreme conditions, raising questions about their origins and current nature. Two predominant mechanisms are orbital migration, which brings them close to their star, and atmospheric escape under the resulting increased irradiation. Yet, their relative roles remain unclear because we lack models that couple the two mechanisms with high precision on secular timescales. To address this need, we developed the JADE code, which simulates the secular atmospheric and dynamical evolution of a planet around its star, and can include the perturbation induced by a distant third body. On the dynamical side, the 3D evolution of the orbit is modeled under stellar and planetary tidal forces, a relativistic correction, and the action of the distant perturber. On the atmospheric side, the vertical structure of the atmosphere is integrated over time based on its thermodynamical properties, inner heating, and the evolving stellar irradiation, which results, in particular, in photo-evaporation. The JADE code is benchmarked on GJ436 b, prototype of evaporating giants on eccentric, misaligned orbits at the edge of the hot Neptunes desert. We confirm that its orbital architecture is well explained by Kozai migration and unveil a strong interplay between its atmospheric and orbital evolution. During the resonance phase, the atmosphere pulsates in tune with the Kozai cycles, which leads to stronger tides and an earlier migration. This triggers a strong evaporation several Gyr after the planet formed, refining the paradigm that mass loss is dominant in the early age of close-in planets. This suggests that the edge of the desert could be formed of warm Neptunes whose evaporation was delayed by migration. It strengthens the importance of coupling atmospheric and dynamical evolution over secular timescales, which the JADE code will allow simulating for a wide range of systems.
Magnetic fields of exoplanets are important in shielding the planets from cosmic rays and interplanetary plasma. Due to the interaction with the electrons from their host stars, the exoplanetary magnetospheres are predicted to have both cyclotron and synchrotron radio emissions, of which neither has been definitely identified in observations yet. As the coherent cyclotron emission has been extensively studied in literatures, here we focus on the planetary synchrotron radiation with bursty behaviors (i.e., radio flares) caused by the outbreaks of energetic electron ejections from the host star. Two key parameters of the bursty synchrotron emissions, namely the flux density and burst rate, and two key features namely the burst light curve and frequency shift, are predicted for star - hot Jupiter systems. The planetary orbital phase - burst rate relation is also considered as the signature of star-planet interactions (SPI). As examples, previous X-ray and radio observations of two well studied candidate systems, HD 189733 and V830 tau, are adopted to predict their specific burst rates and fluxes of bursty synchrotron emissions for further observational confirmations. The detectability of such emissions by current and upcoming radio telescopes shows that we are at the dawn of discoveries.
Radio and X-ray emission from brown dwarfs suggest that an ionised gas and a magnetic field with a sufficient flux density must be present. We perform a reference study for late M-dwarfs, brown dwarfs and giant gas planet to identify which ultra-cool objects are most susceptible to plasma and magnetic processes. Only thermal ionisation is considered. We utilise the {sc Drift-Phoenix} model grid where the local atmospheric structure is determined by the global parameters T$_{rm eff}$, $log(g)$ and [M/H]. Our results show that it is not unreasonable to expect H$_{alpha}$ or radio emission to origin from Brown Dwarf atmospheres as in particular the rarefied upper parts of the atmospheres can be magnetically coupled despite having low degrees of thermal gas ionisation. Such ultra-cool atmospheres could therefore drive auroral emission without the need for a companions wind or an outgassing moon. The minimum threshold for the magnetic flux density required for electrons and ions to be magnetised is well above typical values of the global magnetic field of a brown dwarf and a giant gas planet. Na$^{+}$, K$^{+}$ and Ca$^{+}$ are the dominating electron donors in low-density atmospheres (low log(g), solar metallicity) independent of T$_{rm eff}$. Mg$^{+}$ and Fe$^{+}$ dominate the thermal ionisation in the inner parts of M-dwarf atmospheres. Molecules remain unimportant for thermal ionisation. Chemical processes (e.g. cloud formation) affecting the most abundant electron donors, Mg and Fe, will have a direct impact on the state of ionisation in ultra-cool atmospheres.
We review several aspects of the calculation of exoplanet model atmospheres in the current era, with a focus on understanding the temperature-pressure profiles of atmospheres and their emitted spectra. Most of the focus is on gas giant planets, both under strong stellar irradiation and in isolation. The roles of stellar irradiation, metallicity, surface gravity, C/O ratio, interior fluxes, and cloud opacity are discussed. Connections are made to the well-studied atmospheres of brown dwarfs as well as sub-Neptunes and terrestrial planets, where appropriate. Illustrative examples of model atmosphere retrievals on a thermal emission spectrum are given and connections are made between atmospheric abundances and the predictions of planet formation models.