Do you want to publish a course? Click here

Quantum phase transitions on the hexagonal lattice

67   0   0.0 ( 0 )
 Added by Dominik Smith
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hubbard-type models on the hexagonal lattice are of great interest, as they provide realistic descriptions of graphene and other related materials. Hybrid Monte Carlo simulations offer a first-principles approach to study their phase structure. Here, we review the present status of our work in this direction.



rate research

Read More

A key problem in the field of quantum criticality is to understand the nature of quantum phase transitions in systems of interacting itinerant fermions, motivated by experiments on a variety of strongly correlated materials. Much attention has been paid in recent years to two-dimensional (2D) materials in which itinerant fermions acquire a pseudo-relativistic Dirac dispersion, such as graphene, topological insulator surfaces, and certain spin liquids. This article reviews the phenomenology and theoretical description of quantum phase transitions in systems of 2D Dirac fermions.
We present different methods to increase the performance of Hybrid Monte Carlo simulations of the Hubbard model in two-dimensions. Our simulations concentrate on a hexagonal lattice, though can be easily generalized to other lattices. It is found that best results can be achieved using a flexible GMRES solver for matrix
We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the devils staircase scenario [E. Fradkin et al., Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.
We take advantage of recent improvements in the grand canonical Hybrid Monte Carlo algorithm, to perform a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron interactions. After carefully controlled analyses of the Trotter error, the thermodynamic limit, and finite-size scaling with inverse temperature, we find a critical coupling of $U_c/kappa=3.834(14)$ and the critical exponent $z u=1.185(43)$. Under the assumption that this corresponds to the expected anti-ferromagnetic Mott transition, we are also able to provide a preliminary estimate $beta=1.095(37)$ for the critical exponent of the order parameter. We consider our findings in view of the $SU(2)$ Gross-Neveu, or chiral Heisenberg, universality class. We also discuss the computational scaling of the Hybrid Monte Carlo algorithm, and possible extensions of our work to carbon nanotubes, fullerenes, and topological insulators.
We provide a unified, comprehensive treatment of all operators that contribute to the anti-ferromagnetic, ferromagnetic, and charge-density-wave structure factors and order parameters of the hexagonal Hubbard Model. We use the Hybrid Monte Carlo algorithm to perform a systematic, carefully controlled analysis in the temporal Trotter error and of the thermodynamic limit. We expect our findings to improve the consistency of Monte Carlo determinations of critical exponents. We perform a data collapse analysis and determine the critical exponent $beta=0.898(37)$ for the semimetal-Mott insulator transition in the hexagonal Hubbard Model. Our methods are applicable to a wide range of lattice theories of strongly correlated electrons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا