Properties of Unique Information


Abstract in English

We study the measure of unique information $UI(T:Xsetminus Y)$ defined by Bertschinger et al. (2014) within the framework of information decompositions. We study uniqueness and support of the solutions to the optimization problem underlying the definition of $UI$. We identify sufficient conditions for non-uniqueness of solutions with full support in terms of conditional independence constraints and in terms of the cardinalities of $T$, $X$ and $Y$. Our results are based on a reformulation of the first order conditions on the objective function as rank constraints on a matrix of conditional probabilities. These results help to speed up the computation of $UI(T:Xsetminus Y)$, most notably when $T$ is binary. In the case that all variables are binary, we obtain a complete picture of where the optimizing probability distributions lie.

Download