Do you want to publish a course? Click here

Rigorous results on topological superconductivity with particle number conservation

139   0   0.0 ( 0 )
 Added by Matthew Lapa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most theoretical studies of topological superconductors and Majorana-based quantum computation rely on a mean-field approach to describe superconductivity. A potential problem with this approach is that real superconductors are described by number-conserving Hamiltonians with long-range interactions, so their topological properties may not be correctly captured by mean-field models that violate number conservation and have short-range interactions. To resolve this issue, reliable results on number-conserving models of superconductivity are essential. As a first step in this direction, we use rigorous methods to study a number-conserving toy model of a topological superconducting wire. We prove that this model exhibits many of the desired properties of the mean-field models, including a finite energy gap in a sector of fixed total particle number, the existence of long range Majorana-like correlations between the ends of an open wire, and a change in the ground state fermion parity for periodic vs. anti-periodic boundary conditions. These results show that many of the remarkable properties of mean-field models of topological superconductivity persist in more realistic models with number-conserving dynamics.



rate research

Read More

The key to unraveling the nature of high-temperature superconductivity (HTS) lies in resolving the enigma of the pseudogap state. The pseudogap state in the underdoped region is a distinct thermodynamic phase characterized by nematicity, temperature-quadratic resistive behavior, and magnetoelectric effects. Till present, a general description of the observed universal features of the pseudogap phase and their connection with HTS was lacking. The proposed work constructs a unifying effective field theory capturing all universal characteristics of HTS materials and explaining the observed phase diagram. The pseudogap state is established to be a phase where a charged magnetic monopole condensate confines Cooper pairs to form an oblique version of a superinsulator. The HTS phase diagram is dominated by a tricritical point (TCP) at which the first order transition between a fundamental Cooper pair condensate and a charged magnetic monopole condensate merges with the continuous superconductor-normal metal and superconductor-pseudogap state phase transitions. The universality of the HTS phase diagram reflects a unique topological mechanism of competition between the magnetic monopole condensate, inherent to antiferromagnetic-order-induced Mott insulators and the Cooper pair condensate. The obtained results establish the topological nature of the HTS and provide a platform for devising materials with the enhanced superconducting transition temperature.
We establish a criterion for characterizing superfluidity in interacting, particle-number conserving systems of fermions as topologically trivial or non-trivial. Because our criterion is based on the concept of many-body fermionic parity switches, it is directly associated to the observation of the fractional Josephson effect and indicates the emergence of zero-energy modes that anticommute with fermionic parity. We tested these ideas on the Richardson-Gaudin-Kitaev chain, a particle-number conserving system that is solvable by way of the algebraic Bethe ansatz, and reduces to a long-range Kitaev chain in the mean-field approximation. Guided by its closed-form solution, we introduce a procedure for constructing many-body Majorana zero-energy modes of gapped topological superfluids in terms of coherent superpositions of states with different number of fermions. We discuss their significance and the physical conditions required to enable quantum control in the light of superselection rules.
278 - J. Magnen , J. Unterberger 2019
Starting from H. Frohlichs second-quantized Hamiltonian for a $d$-dimensional electron gas in interaction with lattice phonons describing the quantum vibrations of a metal, we present a rigorous mathematical derivation of the superconducting state, following the principles laid out originally in 1957 by J. Bardeen, L. Cooper and J. Schrieffer. As in the series of papers written on the subject in the 90es, of which the present paper is a continuation, the representation of ions as a uniform charge background allows for a $(1+d)$-dimensional fermionic quantum-field theoretic reformulation of the model at equilibrium. For simplicity, we restrict in this article to $d=2$ dimensions and zero temperature, and disregard effects due to electromagnetic interactions. Under these assumptions, we prove transition from a Fermi liquid state to a superconducting state made up of Cooper pairs of electrons at an energy level $Gamma_{phi}sim hbaromega_D e^{-pi/mlambda}$ equal to the mass gap, expressed in terms of the Debye frequency $omega_D$, electron mass $m$ and coupling constant $lambda$. The dynamical $U(1)$-symmetry breaking produces at energies lower than the energy gap $Gamma_{phi}$ a Goldstone boson, a non-massive particle described by an effective $(2+1)$-dimensional non-linear sigma-model, whose parameters and correlations are computed. The proof relies on a mixture of general concepts and tools (multi-scale cluster expansions, Ward identities), adapted to this quantum many-body problem with its extended infra-red singularity located on the Fermi circle, and a specific $1/N$-expansion giving the leading diagrams at intermediate energies. Ladder diagrams are proved to provide the leading behavior in the infra-red limit, in agreement with mean-field theory predictions.
By intercalation of alkaline-earth metal Sr in Bi2Se3, superconductivity with large shielding volume fraction (~91.5% at 0.5 K) has been achieved in Sr0.065Bi2Se3. The analysis of the Shubnikov-de Hass oscillations confirms the 1/2-shift expected from a Dirac spectrum, giving transport evidence of the existence of surface states. Importantly, the SrxBi2Se3superconductor is stable under air, making the SrxBi2Se3 compound an ideal material base for investigating topological superconductivity.
82 - Yupeng Li , Zhu-An Xu 2019
The exploration of topological superconductivity and Majorana zero modes has become a rapidly developing field. Many types of proposals to realize topological superconductors have been presented, and significant advances have been recently made. In this review, we conduct a survey on the experimental progress in possible topological superconductors and induced superconductivity in topological insulators or semimetals as well as artificial structures. The approaches to inducing superconductivity in topological materials mainly include high pressure application, the hard-tip point contact method, chemical doping or intercalation, the use of artificial topological superconductors, and electric field gating. The evidence supporting topological superconductivity and signatures of Majorana zero modes are also discussed and summarized.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا