No Arabic abstract
We study infrared effects in perturbation theory for large-scale structure coupled to the effective field theory of dark energy, focusing on, in particular, Degenerate Higher-Order Scalar-Tensor (DHOST) theories. In the subhorizon, Newtonian limit, DHOST theories introduce an extra large-scale velocity $v^i_pi$ which is in general different from the matter velocity $v^i$. Contrary to the case in Horndeski theories, the presence of this extra large-scale velocity means that one cannot eliminate the long-wavelength effects of both $v^i$ and $v^i_pi$ with a single coordinate transformation, and thus the standard $Lambda$CDM consistency relations for large-scale structure are violated by terms proportional to the relative velocity $v^i - v^i_pi$. We show, however, that in non-linear quantities this violation is determined by the linear equations and the symmetries of the fluid system. We find that the size of the baryon acoustic oscillations in the squeezed limit of the bispectrum is modified, that the bias expansion contains extra terms which contribute to the squeezed limit of the galaxy bispectrum, that infrared modes in the one-loop power spectrum no longer cancel, and that the equal-time double soft limit of the tree-level trispectrum is non-vanishing. In addition, we give explicit expressions for how these violations depend on the relative velocity. Many of our computations are also relevant for perturbation theory in $Lambda$CDM with exact time dependence.
We study perturbation theory for large-scale structure in the most general scalar-tensor theories propagating a single scalar degree of freedom, which include Horndeski theories and beyond. We model the parameter space using the effective field theory of dark energy. For Horndeski theories, the gravitational field and fluid equations are invariant under a combination of time-dependent transformations of the coordinates and fields. This symmetry allows one to construct a physical adiabatic mode which fixes the perturbation-theory kernels in the squeezed limit and ensures that the well-known consistency relations for large-scale structure, originally derived in general relativity, hold in modified gravity as well. For theories beyond Horndeski, instead, one generally cannot construct such an adiabatic mode. Because of this, the perturbation-theory kernels are modified in the squeezed limit and the consistency relations for large-scale structure do not hold. We show, however, that the modification of the squeezed limit depends only on the linear theory. We investigate the observational consequences of this violation by computing the matter bispectrum. In the squeezed limit, the largest effect is expected when considering the cross-correlation between different tracers. Moreover, the individual contributions to the 1-loop matter power spectrum do not cancel in the infrared limit of the momentum integral, modifying the power spectrum on non-linear scales.
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model fails to simultaneously resolve the Hubble tension and maintain a good fit to both cosmic microwave background (CMB) and large-scale structure (LSS) data. Here, we use redshift-space galaxy clustering data to sharpen constraints on the EDE model. We perform the first EDE analysis using the full-shape power spectrum likelihood from the Baryon Oscillation Spectroscopic Survey (BOSS), based on the effective field theory (EFT) of LSS. The inclusion of this likelihood in the EDE analysis yields a $25%$ tighter error bar on $H_0$ compared to primary CMB data alone, yielding $H_0 = 68.54^{+0.52}_{-0.95}$ km/s/Mpc ($68%$ CL). In addition, we constrain the maximum fractional energy density contribution of the EDE to $f_{rm EDE} < 0.072$ ($95%$ CL). We explicitly demonstrate that the EFT BOSS likelihood yields much stronger constraints on EDE than the standard BOSS likelihood. Including further information from photometric LSS surveys,the constraints narrow by an additional $20%$, yielding $H_0 = 68.73^{+0.42}_{-0.69}$ km/s/Mpc ($68%$ CL) and $f_{rm EDE}<0.053$ ($95%$ CL). These bounds are obtained without including local-universe $H_0$ data, which is in strong tension with the CMB and LSS, even in the EDE model. We also refute claims that MCMC analyses of EDE that omit SH0ES from the combined dataset yield misleading posteriors. Finally, we demonstrate that upcoming Euclid/DESI-like spectroscopic galaxy surveys can greatly improve the EDE constraints. We conclude that current data preclude the EDE model as a resolution of the Hubble tension, and that future LSS surveys can close the remaining parameter space of this model.
We study the imprints of an effective dark energy fluid in the large scale structure of the universe through the observed angular power spectrum of galaxies in the relativistic regime. We adopt the phenomenological approach that introduces two parameters ${Q,eta}$ at the level of linear perturbations and allow to take into account the modified clustering (or effective gravitational constant) and anisotropic stress appearing in models beyond $Lambda$CDM. We characterize the effective dark energy fluid by an equation of state parameter $w=-0.95$ and various sound speed cases in the range $10^{-6}leq c^2_sleq 1$, thus covering K-essence and quintessence cosmologies. We calculate the angular power spectra of standard and relativistic effects for these scenarios under the ${Q,eta}$ parametrization, and we compare these relative to a fiducial $Lambda$CDM cosmology. We find that, overall, deviations relative to $Lambda$CDM are stronger at low redshift since the behavior of the dark energy fluid can mimic the cosmological constant during matter domination era but departs during dark energy domination. In particular, at $z=0.1$ the matter density fluctuations are suppressed by up to $sim3%$ for the quintessence-like case, while redshift-space distortions and Doppler effect can be enhanced by $sim15%$ at large scales for the lowest sound speed scenario. On the other hand, at $z=2$ we find deviations of up to $sim5%$ in gravitational lensing, whereas the Integrated Sachs-Wolfe effect can deviate up to $sim17%$. Furthermore, when considering an imperfect dark energy fluid scenario, we find that all effects are insensitive to the presence of anisotropic stress at low redshift, and only the Integrated Sachs-Wolfe effect can detect this feature at $z=2$ and very large scales.
Consistency relations for chaotic inflation with a monomial potential and natural inflation and hilltop inflation are given which involve the scalar spectral index $n_s$, the tensor-to-scalar ratio $r$ and the running of the spectral index $alpha$. The measurement of $alpha$ with $O(10^{-3})$ and the improvement in the measurement of $n_s$ could discriminate monomial model from natural/hilltop inflation models. A consistency region for general large field models is also presented.
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper, focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.