The electronic anomalous Hall effect (AHE), where charge carriers acquire a velocity component orthogonal to an applied electric field, is one of the most fundamental and widely studied phenomena in physics. There are several different AHE mechanisms known, and material examples are highly sought after, however in the highly conductive (skew scattering) regime the focus has centered around ferromagnetic metals. Here we report the observation of a giant extrinsic AHE in KV$_3$Sb$_5$, an exfoliable, Dirac semimetal with a Kagome layer of Vanadium atoms. Although there has been no reports of magnetic ordering down to 0.25 K, the anomalous Hall conductivity (AHC) reaches $approx$ 15,507 $Omega^{-1}$cm$^{-1}$ with an anomalous Hall ratio (AHR) of $approx$ 1.8$ %$; an order of magnitude larger than Fe. Defying expectations from skew scattering theory, KV$_3$Sb$_5$ shows an enhanced skew scattering effect that scales quadratically, not linearly, with the longitudinal conductivity ($sigma_{xx}$), opening the possibility of reaching an anomalous Hall angle (AHA) of 90$^{circ}$ in metals; an effect thought reserved for quantum anomalous Hall insulators. This observation raises fundamental questions about the AHE and opens a new frontier for AHE (and correspondingly SHE) exploration, stimulating investigation in a new direction of materials, including metallic geometrically frustrated magnets, spin-liquid candidates, and cluster magnets.