Dirac fermion, cosmological event horizons and quantum entanglement


Abstract in English

We discuss the field quantisation of a free massive Dirac fermion in the two causally disconnected static patches of the de Sitter spacetime, by using mode functions that are normalisable on the cosmological event horizon. Using this, we compute the entanglement entropy of the vacuum state corresponding to these two regions, for a given fermionic mode. Further extensions of this result to more general static spherically symmetric and stationary axisymmetric spacetimes are discussed. For the stationary axisymmetric Kerr-de Sitter spacetime in particular, the variations of the entanglement entropy with respect to various eigenvalues and spacetime parameters are depicted numerically. We also comment on such variations when instead we consider the non-extremal black hole event horizon of the same spacetime.

Download