Job Prediction: From Deep Neural Network Models to Applications


Abstract in English

Determining the job is suitable for a student or a person looking for work based on their jobs descriptions such as knowledge and skills that are difficult, as well as how employers must find ways to choose the candidates that match the job they require. In this paper, we focus on studying the job prediction using different deep neural network models including TextCNN, Bi-GRU-LSTM-CNN, and Bi-GRU-CNN with various pre-trained word embeddings on the IT Job dataset. In addition, we also proposed a simple and effective ensemble model combining different deep neural network models. The experimental results illustrated that our proposed ensemble model achieved the highest result with an F1 score of 72.71%. Moreover, we analyze these experimental results to have insights about this problem to find better solutions in the future.

Download