Do you want to publish a course? Click here

Combinatorial Trace Method for Network Immunization

76   0   0.0 ( 0 )
 Added by Muhammad Ahmad
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Immunizing a subset of nodes in a network - enabling them to identify and withstand the spread of harmful content - is one of the most effective ways to counter the spread of malicious content. It has applications in network security, public health policy, and social media surveillance. Finding a subset of nodes whose immunization results in the least vulnerability of the network is a computationally challenging task. In this work, we establish a relationship between a widely used network vulnerability measure and the combinatorial properties of networks. Using this relationship and graph summarization techniques, we propose an efficient approximation algorithm to find a set of nodes to immunize. We provide theoretical justifications for the proposed solution and analytical bounds on the runtime of our algorithm. We empirically demonstrate on various real-world networks that the performance of our algorithm is an order of magnitude better than the state of the art solution. We also show that in practice the runtime of our algorithm is significantly lower than that of the best-known solution.



rate research

Read More

Understanding the epidemic dynamics, and finding out efficient techniques to control it, is a challenging issue. A lot of research has been done on targeted immunization strategies, exploiting various global network topological properties. However, in practice, information about the global structure of the contact network may not be available. Therefore, immunization strategies that can deal with a limited knowledge of the network structure are required. In this paper, we propose targeted immunization strategies that require information only at the community level. Results of our investigations on the SIR epidemiological model, using a realistic synthetic benchmark with controlled community structure, show that the community structure plays an important role in the epidemic dynamics. An extensive comparative evaluation demonstrates that the proposed strategies are as efficient as the most influential global centrality based immunization strategies, despite the fact that they use a limited amount of information. Furthermore, they outperform alternative local strategies, which are agnostic about the network structure, and make decisions based on random walks.
A rich literature has explored the modeling of homophily and other forms of nonuniform mixing associated with individual-level covariates within the exponential family random graph (ERGM) framework. Such differential mixing does not fully explain phenomena such as stigma, however, which involve the active maintenance of social boundaries by ostracism of persons with out-group ties. Here, we introduce a new statistic that allows for such effects to be captured, making it possible to probe for the potential presence of boundary maintenance above and beyond simple differences in nomination rates. We demonstrate this statistic in the context of gender segregation in a school classroom.
Visual analysis of temporal networks comprises an effective way to understand the network dynamics, facilitating the identification of patterns, anomalies, and other network properties, thus resulting in fast decision making. The amount of data in real-world networks, however, may result in a layout with high visual clutter due to edge overlapping. This is particularly relevant in the so-called streaming networks, in which edges are continuously arriving (online) and in non-stationary distribution. All three network dimensions, namely node, edge, and time, can be manipulated to reduce such clutter and improve readability. This paper presents an online and nonuniform timeslicing method, thus considering the underlying network structure and addressing streaming network analyses. We conducted experiments using two real-world networks to compare our method against uniform and nonuniform timeslicing strategies. The results show that our method automatically selects timeslices that effectively reduce visual clutter in periods with bursts of events. As a consequence, decision making based on the identification of global temporal patterns becomes faster and more reliable.
Strategic network formation arises where agents receive benefit from connections to other agents, but also incur costs for forming links. We consider a new network formation game that incorporates an adversarial attack, as well as immunization against attack. An agents benefit is the expected size of her connected component post-attack, and agents may also choose to immunize themselves from attack at some additional cost. Our framework is a stylized model of settings where reachability rather than centrality is the primary concern and vertices vulnerable to attacks may reduce risk via costly measures. In the reachability benefit model without attack or immunization, the set of equilibria is the empty graph and any tree. The introduction of attack and immunization changes the game dramatically; new equilibrium topologies emerge, some more sparse and some more dense than trees. We show that, under a mild assumption on the adversary, every equilibrium network with $n$ agents contains at most $2n-4$ edges for $ngeq 4$. So despite permitting topologies denser than trees, the amount of overbuilding is limited. We also show that attack and immunization dont significantly erode social welfare: every non-trivial equilibrium with respect to several adversaries has welfare at least as that of any equilibrium in the attack-free model. We complement our theory with simulations demonstrating fast convergence of a new bounded rationality dynamic which generalizes linkstable best response but is considerably more powerful in our game. The simulations further elucidate the wide variety of asymmetric equilibria and demonstrate topological consequences of the dynamics e.g. heavy-tailed degree distributions. Finally, we report on a behavioral experiment on our game with over 100 participants, where despite the complexity of the game, the resulting network was surprisingly close to equilibrium.
A distinguishing property of communities in networks is that cycles are more prevalent within communities than across communities. Thus, the detection of these communities may be aided through the incorporation of measures of the local richness of the cyclic structure. In this paper, we introduce renewal non-backtracking random walks (RNBRW) as a way of quantifying this structure. RNBRW gives a weight to each edge equal to the probability that a non-backtracking random walk completes a cycle with that edge. Hence, edges with larger weights may be thought of as more important to the formation of cycles. Of note, since separate random walks can be performed in parallel, RNBRW weights can be estimated very quickly, even for large graphs. We give simulation results showing that pre-weighting edges through RNBRW may substantially improve the performance of common community detection algorithms. Our results suggest that RNBRW is especially efficient for the challenging case of detecting communities in sparse graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا