Do you want to publish a course? Click here

Experimental Observation of Equilibrium and Dynamical Quantum Phase Transitions via Out-of-Time-Ordered Correlators

89   0   0.0 ( 0 )
 Added by Tao Xin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The out-of-time-ordered correlators (OTOC) have been established as a fundamental concept for quantifying quantum information scrambling and diagnosing quantum chaotic behavior. Recently, it was theoretically proposed that the OTOC can be used as an order parameter to dynamically detect both equilibrium quantum phase transitions (EQPTs) and dynamical quantum phase transitions (DQPTs) in one-dimensional many-body systems. Here we report the first experimental observation of EQPTs and DQPTs in a quantum spin chain via quench dynamics of OTOC on a nuclear magnetic resonance quantum simulator. We observe that the quench dynamics of both the order parameter and the two-body correlation function cannot detect the DQPTs, but the OTOC can unambiguously detect the DQPTs. Moreover, we demonstrate that the long-time average value of the OTOC in quantum quench signals the equilibrium quantum critical point and ordered quantum phases, thus one can measure the EQPTs from the non-equilibrium quantum quench dynamics. Our experiment paves a way for experimentally investigating DQPTs through OTOCs and for studying the EQPTs through the non-equilibrium quantum quench dynamics with quantum simulators.



rate research

Read More

The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling laws which are specified by a few universal critical exponents of the quantum critical point. Such scaling laws of the OTOC imply a universal form for the butterfly velocity of a chaotic system in the quantum critical region and allow one to locate the quantum critical point and extract all universal critical exponents of the quantum phase transitions. We numerically confirm the universality of the butterfly velocity in a chaotic model, namely the transverse axial next-nearest-neighbor Ising model, and show the feasibility of extracting the critical properties of quantum phase transitions from OTOC using the Lipkin-Meshkov-Glick (LMG) model.
Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are challenging analytically and exponentially difficult to simulate on classical computers. Small-scale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally challenging, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3x3 two-dimensional hard-core Bose-Hubbard lattice with a superconducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which we achieve with a digital-analog simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present, a possible signature of many-body localization in two dimensions.
The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of theatomic level splitting to the single-mode electromagnetic radiation field frequency. The focus is on the OTOC thermally averaged with infinite temperature, which is an experimentally feasible quantity. It is shown that thecritical points can be identified by long-time averaging of the OTOC via observing its local minimum behavior. More importantly, the scaling laws of the OTOC for QPTs are revealed by studying the experimentally accessible conditions with finite frequency ratio and finite number of atoms in the studied models. The critical exponents extracted from the scaling laws of OTOC indicate that the QPTs in the Rabi and Dicke models belong to the same universality class.
Out-of-time-ordered correlators (OTOCs) have been proposed as a tool to witness quantum information scrambling in many-body system dynamics. These correlators can be understood as averages over nonclassical multi-time quasi-probability distributions (QPDs). These QPDs have more information, and their nonclassical features witness quantum information scrambling in a more nuanced way. However, their high dimensionality and nonclassicality make QPDs challenging to measure experimentally. We focus on the topical case of a many-qubit system and show how to obtain such a QPD in the laboratory using circuits with three and four sequential measurements. Averaging distinct values over the same measured distribution reveals either the OTOC or parameters of its QPD. Stronger measurements minimize experimental resources despite increased dynamical disturbance.
Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a shell-like structure: after the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a $t^{-1}$ power law at long time $t$. On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a ball-like structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law $t^{-1/4}$ for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a ball-like structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا