In this article, we study the Beilinson-Bloch-Kato conjecture for motives corresponding to the Rankin-Selberg product of conjugate self-dual automorphic representations, within the framework of the Gan-Gross-Prasad conjecture. We show that if the central critical value of the Rankin-Selberg $L$-function does not vanish, then the Bloch-Kato Selmer group with coefficients in a favorable field of the corresponding motive vanishes. We also show that if the class in the Bloch-Kato Selmer group constructed from certain diagonal cycle does not vanish, which is conjecturally equivalent to the nonvanishing of the central critical first derivative of the Rankin-Selberg $L$-function, then the Bloch-Kato Selmer group is of rank one.