Do you want to publish a course? Click here

On Universal Scaling of Distributed Queues under Load Balancing

60   0   0.0 ( 0 )
 Added by Xin Liu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper considers the steady-state performance of load balancing algorithms in a many-server system with distributed queues. The system has $N$ servers, and each server maintains a local queue with buffer size $b-1,$ i.e. a server can hold at most one job in service and $b-1$ jobs in the queue. Jobs in the same queue are served according to the first-in-first-out (FIFO) order. The system is operated in a heavy-traffic regime such that the workload per server is $lambda = 1 - N^{-alpha}$ for $0.5leq alpha<1.$ We identify a set of algorithms such that the steady-state queues have the following universal scaling, where {em universal} means that it holds for any $alphain[0.5,1)$: (i) the number of of busy servers is $lambda N-o(1);$ and (ii) the number of servers with two jobs (one in service and one in queue) is $O(N^{alpha}log N);$ and (iii) the number of servers with more than two jobs is $Oleft(frac{1}{N^{r(1-alpha)-1}}right),$ where $r$ can be any positive integer independent of $N.$ The set of load balancing algorithms that satisfy the sufficient condition includes join-the-shortest-queue (JSQ), idle-one-first (I1F), and power-of-$d$-choices (Po$d$) with $dgeq N^alphalog^2 N.$ We further argue that the waiting time of such an algorithm is near optimal order-wise.



rate research

Read More

85 - Xin Liu , Kang Gong , Lei Ying 2020
This paper studies load balancing for many-server ($N$ servers) systems. Each server has a buffer of size $b-1,$ and can have at most one job in service and $b-1$ jobs in the buffer. The service time of a job follows the Coxian-2 distribution. We focus on steady-state performance of load balancing policies in the heavy traffic regime such that the normalized load of system is $lambda = 1 - N^{-alpha}$ for $0<alpha<0.5.$ We identify a set of policies that achieve asymptotic zero waiting. The set of policies include several classical policies such as join-the-shortest-queue (JSQ), join-the-idle-queue (JIQ), idle-one-first (I1F) and power-of-$d$-choices (Po$d$) with $d=O(N^alphalog N)$. The proof of the main result is based on Steins method and state space collapse. A key technical contribution of this paper is the iterative state space collapse approach that leads to a simple generator approximation when applying Steins method.
We consider a system of N queues with decentralized load balancing such as power-of-D strategies(where D may depend on N) and generic scheduling disciplines. To measure the dependence of the queues, we use the clan of ancestors, a technique coming from interacting particle systems. Relying in that analysis we prove quantitative estimates on the queues correlations implying propagation of chaos for systems with Markovian arrivals and general service time distribution. This solves the conjecture posed by Bramsom et. al. in [*] concerning the asymptotic independence of the servers in the case of processor sharing policy. We then proceed to prove asymptotic insensitivity in the stationary regime for a wide class of scheduling disciplines and obtain speed of convergence estimates for light tailed service distribution. [*] M. BRAMSON, Y. LU AND B. PRABHAKAR, Asymptotic independence of queues under randomized load balancing, Queueing Syst., 71:247-292, 2012.
We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for stable orientations and more generally for locally optimal semi-matchings. The prior work by Czygrinow et al. (DISC 2012) finds a stable orientation in $O(Delta^5)$ rounds in graphs of maximum degree $Delta$, while we improve it to $O(Delta^4)$ and also prove a lower bound of $Omega(Delta)$.
In this paper we consider neighborhood load balancing in the context of selfish clients. We assume that a network of n processors and m tasks is given. The processors may have different speeds and the tasks may have different weights. Every task is controlled by a selfish user. The objective of the user is to allocate his/her task to a processor with minimum load. We revisit the concurrent probabilistic protocol introduced in [6], which works in sequential rounds. In each round every task is allowed to query the load of one randomly chosen neighboring processor. If that load is smaller the task will migrate to that processor with a suitably chosen probability. Using techniques from spectral graph theory we obtain upper bounds on the expected convergence time towards approximate and exact Nash equilibria that are significantly better than the previous results in [6]. We show results for uniform tasks on non-uniform processors and the general case where the tasks have different weights and the machines have speeds. To the best of our knowledge, these are the first results for this general setting.
75 - Xingyu Zhou , Ness Shroff 2020
In this note, we apply Steins method to analyze the performance of general load balancing schemes in the many-server heavy-traffic regime. In particular, consider a load balancing system of $N$ servers and the distance of arrival rate to the capacity region is given by $N^{1-alpha}$ with $alpha > 1$. We are interested in the performance as $N$ goes to infinity under a large class of policies. We establish different asymptotics under different scalings and conditions. Specifically, (i) If the second moments linearly increase with $N$ with coefficients $sigma_a^2$ and $ u_s^2$, then for any $alpha > 4$, the distribution of the sum queue length scaled by $N^{-alpha}$ converges to an exponential random variable with mean $frac{sigma_a^2 + u_s^2}{2}$. (3) If the second moments quadratically increase with $N$ with coefficients $tilde{sigma}_a^2$ and $tilde{ u}_s^2$, then for any $alpha > 3$, the distribution of the sum queue length scaled by $N^{-alpha-1}$ converges to an exponential random variable with mean $frac{tilde{sigma}_a^2 + tilde{ u}_s^2}{2}$. Both results are simple applications of our previously developed framework of Steins method for heavy-traffic analysis in cite{zhou2020note}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا