Do you want to publish a course? Click here

Regularity of the Hamiltonian along Optimal Trajectories

81   0   0.0 ( 0 )
 Added by Michele Palladino
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper concerns state constrained optimal control problems, in which the dynamic constraint takes the form of a differential inclusion. If the differential inclusion does not depend on time, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, is independent of time. If the differential inclusion is Lipschitz continuous, then the Hamitonian, evaluated along the optimal state trajectory and the co-state trajectory, is Lipschitz continuous. These two well-known results are examples of the following principle: the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, inherits the regularity properties of the differential inclusion, regarding its time dependence. We show that this principle also applies to another kind of regularity: if the differential inclusion has bounded variation with respect to time, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, has bounded variation. Two applications of these newly found properties are demonstrated. One is to derive improved conditions which guarantee the nondegeneracy of necessary conditions of optimality, in the form of a Hamiltonian inclusion. The other application is to derive new, less restrictive, conditions under which minimizers in the calculus of variations have bounded slope. The analysis is based on a new, local, concept of differential inclusions that have bounded variation with respect to the time variable, in which conditions are imposed on the multifunction involved, only in a neighborhood of a given state trajectory.



rate research

Read More

The dynamics of many open quantum systems are described by stochastic master equations. In the discrete-time case, we recall the structure of the derived quantum filter governing the evolution of the density operator conditioned to the measurement outcomes. We then describe the structure of the corresponding particle quantum filters for estimating constant parameter and we prove their stability. In the continuous-time (diffusive) case, we propose a new formulation of these particle quantum filters. The interest of this new formulation is first to prove stability, and also to provide an efficient algorithm preserving, for any discretization step-size, positivity of the quantum states and parameter classical probabilities. This algorithm is tested on experimental data to estimate the detection efficiency for a superconducting qubit whose fluorescence field is measured using a heterodyne detector.
In this article, we provide sufficient conditions under which the controlled vector fields solution of optimal control problems formulated on continuity equations are Lipschitz regular in space. Our approach involves a novel combination of mean-field approximations for infinite-dimensional multi-agent optimal control problems, along with a careful extension of an existence result of locally optimal Lipschitz feedbacks. The latter is based on the reformulation of a coercivity estimate in the language of Wasserstein calculus, which is used to obtain uniform Lipschitz bounds along sequences of approximations by empirical measures.
We propose a novel and efficient training method for RNNs by iteratively seeking a local minima on the loss surface within a small region, and leverage this directional vector for the update, in an outer-loop. We propose to utilize the Frank-Wolfe (FW) algorithm in this context. Although, FW implicitly involves normalized gradients, which can lead to a slow convergence rate, we develop a novel RNN training method that, surprisingly, even with the additional cost, the overall training cost is empirically observed to be lower than back-propagation. Our method leads to a new Frank-Wolfe method, that is in essence an SGD algorithm with a restart scheme. We prove that under certain conditions our algorithm has a sublinear convergence rate of $O(1/epsilon)$ for $epsilon$ error. We then conduct empirical experiments on several benchmark datasets including those that exhibit long-term dependencies, and show significant performance improvement. We also experiment with deep RNN architectures and show efficient training performance. Finally, we demonstrate that our training method is robust to noisy data.
Intelligent mobile sensors, such as uninhabited aerial or underwater vehicles, are becoming prevalent in environmental sensing and monitoring applications. These active sensing platforms operate in unsteady fluid flows, including windy urban environments, hurricanes, and ocean currents. Often constrained in their actuation capabilities, the dynamics of these mobile sensors depend strongly on the background flow, making their deployment and control particularly challenging. Therefore, efficient trajectory planning with partial knowledge about the background flow is essential for teams of mobile sensors to adaptively sense and monitor their environments. In this work, we investigate the use of finite-horizon model predictive control (MPC) for the energy-efficient trajectory planning of an active mobile sensor in an unsteady fluid flow field. We uncover connections between the finite-time optimal trajectories and finite-time Lyapunov exponents (FTLE) of the background flow, confirming that energy-efficient trajectories exploit invariant coherent structures in the flow. We demonstrate our findings on the unsteady double gyre vector field, which is a canonical model for chaotic mixing in the ocean. We present an exhaustive search through critical MPC parameters including the prediction horizon, maximum sensor actuation, and relative penalty on the accumulated state error and actuation effort. We find that even relatively short prediction horizons can often yield nearly energy-optimal trajectories. These results are promising for the adaptive planning of energy-efficient trajectories for swarms of mobile sensors in distributed sensing and monitoring.
95 - M.T. Hale , Y. Wardi , H. Jaleel 2016
This paper proposes an algorithmic technique for a class of optimal control problems where it is easy to compute a pointwise minimizer of the Hamiltonian associated with every applied control. The algorithm operates in the space of relaxed controls and projects the final result into the space of ordinary controls. It is based on the descent direction from a given relaxed control towards a pointwise minimizer of the Hamiltonian. This direction comprises a form of gradient projection and for some systems, is argued to have computational advantages over direct gradient directions. The algorithm is shown to be applicable to a class of hybrid optimal control problems. The theoretical results, concerning convergence of the algorithm, are corroborated by simulation examples on switched-mode hybrid systems as well as on a problem of balancing transmission- and motion energy in a mobile robotic system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا