Do you want to publish a course? Click here

On continuation criteria for the full compressible Navier-Stokes equations in Lorentz spaces

85   0   0.0 ( 0 )
 Added by Yanqing Wang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we derive several new sufficient conditions of non-breakdown of strong solutions for for both the 3D heat-conducting compressible Navier-Stokes system and nonhomogeneous incompressible Navier-Stokes equations. First, it is shown that there exists a positive constant $varepsilon$ such that the solution $(rho,u,theta)$ to full compressible Navier-Stokes equations can be extended beyond $t=T$ provided that one of the following two conditions holds (1) $rho in L^{infty}(0,T;L^{infty}(mathbb{R}^{3}))$, $uin L^{p,infty}(0,T;L^{q,infty}(mathbb{R}^{3}))$ and $$| u|_{L^{p,infty}(0,T;L^{q,infty}(mathbb{R}^{3}))}leq varepsilon, ~~text{with}~~ {2/p}+ {3/q}=1, q>3;$$ (2) $lambda<3mu,$ $rho in L^{infty}(0,T;L^{infty}(mathbb{R}^{3}))$, $thetain L^{p,infty}(0,T;L^{q,infty}(mathbb{R}^{3}))$ and $$|theta|_{L^{p,infty}(0,T; L^{q,infty}(mathbb{R}^{3}))}leq varepsilon, ~~text{with}~~ {2/p}+ {3/q}=2, q>3/2.$$ To the best of our knowledge, this is the first continuation theorem allowing the time direction to be in Lorentz spaces for the compressible fluid. Second, we establish some blow-up criteria in anisotropic Lebesgue spaces to the full Navier-Stokes system. Third, without the condition on $rho$ in (0.1) and (0.3), the results also hold for the 3D nonhomogeneous incompressible Navier-Stokes equations. The appearance of vacuum in these systems could be allowed.



rate research

Read More

In this paper, inspired by the study of the energy flux in local energy inequality of the 3D incompressible Navier-Stokes equations, we improve almost all the blow up criteria involving temperature to allow the temperature in its scaling invariant space for the 3D full compressible Navier-Stokes equations. Enlightening regular criteria via pressure $Pi=frac{text {divdiv}}{-Delta}(u_{i}u_{j})$ of the 3D incompressible Navier-Stokes equations on bounded domain, we generalize Beirao da Veigas result in [1] from the incompressible Navier-Stokes equations to the isentropic compressible Navier-Stokes system in the case away from vacuum.
86 - Yanqing Wang , Wei Wei , Huan Yu 2019
In this paper, we are concerned with regularity of suitable weak solutions of the 3D Navier-Stokes equations in Lorentz spaces. We obtain $varepsilon$-regularity criteria in terms of either the velocity, the gradient of the velocity, the vorticity, or deformation tensor in Lorentz spaces. As an application, this allows us to extend the result involving Lerays blow up rate in time, and to show that the number of singular points of weak solutions belonging to $ L^{p,infty}(-1,0;L^{q,l}(mathbb{R}^{3})) $ and $ {2}/{p}+{3}/{q}=1$ with $3<q<infty$ and $qleq l <infty$ is finite.
84 - Xiang Ji , Yanqing Wang , Wei Wei 2019
In this paper, we derive regular criteria via pressure or gradient of the velocity in Lorentz spaces to the 3D Navier-Stokes equations. It is shown that a Leray-Hopf weak solution is regular on $(0,T]$ provided that either the norm $|Pi|_{L^{p,infty}(0,T; L ^{q,infty}(mathbb{R}^{3}))} $ with $ {2}/{p}+{3}/{q}=2$ $({3}/{2}<q<infty)$ or $| ablaPi|_{L^{p,infty}(0,T; L ^{q,infty}(mathbb{R}^{3}))} $ with $ {2}/{p}+{3}/{q}=3$ $(1<q<infty)$ is small. This gives an affirmative answer to a question proposed by Suzuki in [26, Remark 2.4, p.3850]. Moreover, regular conditions in terms of $ abla u$ obtained here generalize known ones to allow the time direction to belong to Lorentz spaces.
The energy equalities of compressible Navier-Stokes equations with general pressure law and degenerate viscosities are studied. By using a unified approach, we give sufficient conditions on the regularity of weak solutions for these equalities to hold. The method of proof is suitable for the case of periodic as well as homogeneous Dirichlet boundary conditions. In particular, by a careful analysis using the homogeneous Dirichlet boundary condition, no boundary layer assumptions are required when dealing with bounded domains with boundary.
We are concerned with the Cauchy problem of the full compressible Navier-Stokes equations satisfied by viscous and heat conducting fluids in $mathbb{R}^n.$ We focus on the so-called critical Besov regularity framework. In this setting, it is natural to consider initial densities $rho_0,$ velocity fields $u_0$ and temperatures $theta_0$ with $a_0:=rho_0-1indot B^{frac np}_{p,1},$ $u_0indot B^{frac np-1}_{p,1}$ and $theta_0indot B^{frac np-2}_{p,1}.$ After recasting the whole system in Lagrangian coordinates, and working with the emph{total energy along the flow} rather than with the temperature, we discover that the system may be solved by means of Banach fixed point theorem in a critical functional framework whenever the space dimension is $ngeq2,$ and $1<p<2n.$ Back to Eulerian coordinates, this allows to improve the range of $p$s for which the system is locally well-posed, compared to Danchin, Comm. Partial Differential Equations 26 (2001).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا