We introduce the first principle model describing frequency comb generation in a WGM microresonator with the backscattering-induced coupling between the counter-propagating waves. {Elaborated model provides deep insight and accurate description of the complex dynamics of nonlinear processes in such systems.} We analyse the backscattering impact on the splitting and reshaping of the nonlinear resonances, demonstrate backscattering-induced modulational instability in the normal dispersion regime and subsequent frequency comb generation. We present and discuss novel features of the soliton comb dynamics induced by the backward wave.