Do you want to publish a course? Click here

Two-dimensional perturbative scalar QFT and Atiyah-Segal gluing

392   0   0.0 ( 0 )
 Added by Pavel Mnev
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the perturbative quantization of 2-dimensional massive scalar field theory with polynomial (or power series) potential on manifolds with boundary. We prove that it fits into the functorial quantum field theory framework of Atiyah-Segal. In particular, we prove that the perturbative partition function defined in terms of integrals over configuration spaces of points on the surface satisfies an Atiyah-Segal type gluing formula. Tadpoles (short loops) behave nontrivially under gluing and play a crucial role in the result.



rate research

Read More

This is a survey of our program of perturbative quantization of gauge theories on manifolds with boundary compatible with cutting/pasting and with gauge symmetry treated by means of a cohomological resolution (Batalin-Vilkovisky) formalism. We also give two explicit quantum examples -- abelian BF theory and the Poisson sigma model. This exposition is based on a talk by P.M. at the ICMP 2015 in Santiago de Chile.
144 - Albert Much 2016
In this work, the second-quantized version of the spatial-coordinate operator, known as the Newton-Wigner-Pryce operator, is explicitly given w.r.t. the massless scalar field. Moreover, transformations of the conformal group are calculated on eigenfunctions of this operator in order to investigate the covariance group w.r.t. probability amplitudes of localizing particles.
Mensky has suggested to account for continuous measurement by attaching to a path integral a weight function centered around the classical path that the integral assigns a probability amplitude to. We show that in fact this weight function doesnt have to be viewed as an additional ingredient put in by hand. It can be derived instead from the conventional path integral if the infinitesimal term iepsilon in the propagator is made finite; the classical trajectory is proportional to the current.
We provide a model independent construction of a net of C*-algebras satisfying the Haag-Kastler axioms over any spacetime manifold. Such a net, called the net of causal loops, is constructed by selecting a suitable base K encoding causal and symmetry properties of the spacetime. Considering K as a partially ordered set (poset) with respect to the inclusion order relation, we define groups of closed paths (loops) formed by the elements of K. These groups come equipped with a causal disjointness relation and an action of the symmetry group of the spacetime. In this way the local algebras of the net are the group C*-algebras of the groups of loops, quotiented by the causal disjointness relation. We also provide a geometric interpretation of a class of representations of this net in terms of causal and covariant connections of the poset K. In the case of the Minkowski spacetime, we prove the existence of Poincare covariant representations satisfying the spectrum condition. This is obtained by virtue of a remarkable feature of our construction: any Hermitian scalar quantum field defines causal and covariant connections of K. Similar results hold for the chiral spacetime $S^1$ with conformal symmetry.
The problem of building supersymmetry in the quantum mechanics of two Coulombian centers of force is analyzed. It is shown that there are essentially two ways of proceeding. The spectral problems of the SUSY (scalar) Hamiltonians are quite similar and become tantamount to solving entangled families of Razavy and Whittaker-Hill equations in the first approach. When the two centers have the same strength, the Whittaker-Hill equations reduce to Mathieu equations. In the second approach, the spectral problems are much more difficult to solve but one can still find the zero-energy ground states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا