Do you want to publish a course? Click here

Axion Dark Matter Detection by Superconducting Resonant Frequency Conversion

85   0   0.0 ( 0 )
 Added by Asher Berlin
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We propose an approach to search for axion dark matter with a specially designed superconducting radio frequency cavity, targeting axions with masses $m_a lesssim 10^{-6} text{ eV}$. Our approach exploits axion-induced transitions between nearly degenerate resonant modes of frequency $sim$ GHz. A scan over axion mass is achieved by varying the frequency splitting between the two modes. Compared to traditional approaches, this allows for parametrically enhanced signal power for axions lighter than a GHz. The projected sensitivity covers unexplored parameter space for QCD axion dark matter for $10^{-8} text{ eV} lesssim m_a lesssim10^{-6} text{ eV}$ and axion-like particle dark matter as light as $m_a sim 10^{-14} text{ eV}$.



rate research

Read More

The QCD axion or axion-like particles are candidates of dark matter of the universe. On the other hand, axion-like excitations exist in certain condensed matter systems, which implies that there can be interactions of dark matter particles with condensed matter axions. We discuss the relationship between the condensed matter axion and a collective spin-wave excitation in an anti-ferromagnetic insulator at the quantum level. The conversion rate of the light dark matter, such as the elementary particle axion or hidden photon, into the condensed matter axion is estimated for the discovery of the dark matter signals.
We investigate the prospect of an alternative laboratory-based search for the coupling of axions and axion-like particles to photons. Here, the collision of two laser beams resonantly produces axions, and a signal photon is detected after magnetic reconversion, as in light-shining-through-walls (LSW) experiments. Conventional searches, such as LSW or anomalous birefrigence measurements, are most sensitive to axion masses for which substantial coherence can be achieved; this is usually well below optical energies. We find that using currently available high-power laser facilities, the bounds that can be achieved by our approach outperform traditional LSW at axion masses between $0.5-6$ eV, set by the optical laser frequencies and collision angle. These bounds can be further improved through coherent scattering off laser substructures, probing axion-photon couplings down to $g_{agammagamma}sim 10^{-8} {text{GeV}^{-1}}$, comparable with existing CAST bounds. Assuming a day long measurement per angular step, the QCD axion band can be reached.
We propose an experimental setup to search for Axion-like particles (ALPs) using two superconducting radio-frequency cavities. In this light-shining-through-wall setup the axion is sourced by two modes with large fields and nonzero $vec Ecdot vec B$ in an emitter cavity. In a nearby identical cavity only one of these modes, the spectator, is populated while the other is a quiet signal mode. Axions can up-convert off the spectator mode into signal photons. We discuss the physics reach of this setup finding potential to explore new ALP parameter space. Enhanced sensitivity can be achieved if high-level modes can be used, thanks to improved phase matching between the excited modes and the generated axion field. We also discuss the potential leakage noise effects and their mitigation, which is aided by O(GHz) separation between the spectator and signal frequencies.
We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range $m_a = (2-16)$ neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, $tau(pto K^+ bar{ u}) lesssim 4 times 10^{37} text{ yr}$ and $tau(p to pi^+ bar{ u}) lesssim 2 times 10^{36}text{ yr}$. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.
The axion, originated from the Peccei-Quinn mechanism proposed to solve the strong-CP problem, is a well motivated and popular dark matter candidate. Experimental searches for this hypothetical particle are starting to reach theoretically interesting sensitivity levels. However, only a small fraction of the allowed parameter space has been explored so far, mostly in the $mu$eV (GHz) region, relying on large volume solenoid magnetic fields and microwave resonators with signals read out by quantum noise limited amplifiers. There have been intensive experimental efforts to widen the search range by devising various techniques as well as to enhance sensitivities by implementing advanced technologies. The developments and improvements in these orthogonal approaches will enable us to explore most of the parameter space of the axion and axion-like particles within the next five to ten years. We review the experimental aspects of axion physics and discuss the past, present and future of the individual search programs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا