If Poincar{e} inequality has been studied by Bobkov for radial measures, few is known about the logarithmic Sobolev inequalty in the radial case. We try to fill this gap here using different methods: Bobkovs argument and super-Poincar{e} inequalities, direct approach via L1-logarithmic Sobolev inequalities. We also give various examples where the obtained bounds are quite sharp. Recent bounds obtained by Lee-Vempala in the logconcave bounded case are refined for radial measures.