No Arabic abstract
With the wide deployment of digital image capturing equipment, the need of denoising to produce a crystal clear image from noisy capture environment has become indispensable. This work presents a novel image denoising method that can tackle both impulsive noise, such as salt and pepper noise (SAPN), and additive white Gaussian noise (AWGN), such as hot carrier noise from CMOS sensor, at the same time. We propose to use low-rank matrix approximation to form the basic denoising framework, as it has the advantage of preserving the spatial integrity of the image. To mitigate the SAPN, the original noise corrupted image is randomly sampled to produce sampled image sets. Low-rank matrix factorization method (LRMF) via alternating minimization denoising method is applied to all sampled images, and the resultant images are fused together via a wavelet fusion with hard threshold denoising. Since the sampled image sets have independent but identical noise property, the wavelet fusion serves as the effective mean to remove the AWGN, while the LRMF method suppress the SAPN. Simulation results are presented which vividly show the denoised images obtained by the proposed method can achieve crystal clear image with strong structural integrity and showing good performance in both subjective and objective metrics.
Hyperspectral image (HSI) denoising aims to restore clean HSI from the noise-contaminated one. Noise contamination can often be caused during data acquisition and conversion. In this paper, we propose a novel spatial-spectral total variation (SSTV) regularized nonconvex local low-rank (LR) tensor approximation method to remove mixed noise in HSIs. From one aspect, the clean HSI data have its underlying local LR tensor property, even though the real HSI data may not be globally low-rank due to out-liers and non-Gaussian noise. According to this fact, we propose a novel tensor $L_{gamma}$-norm to formulate the local LR prior. From another aspect, HSIs are assumed to be piecewisely smooth in the global spatial and spectral domains. Instead of traditional bandwise total variation, we use the SSTV regularization to simultaneously consider global spatial structure and spectral correlation of neighboring bands. Results on simulated and real HSI datasets indicate that the use of local LR tensor penalty and global SSTV can boost the preserving of local details and overall structural information in HSIs.
Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information. During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and stripes. The image quality degeneration would badly effect some applications. In this paper, we present a HSI restoration method named smooth and robust low rank tensor recovery. Specifically, we propose a structural tensor decomposition in accordance with the linear spectral mixture model of HSI. It decomposes a tensor into sums of outer matrix vector products, where the vectors are orthogonal due to the independence of endmember spectrums. Based on it, the global low rank tensor structure can be well exposited for HSI denoising. In addition, the 3D anisotropic total variation is used for spatial spectral piecewise smoothness of HSI. Meanwhile, the sparse noise including impulse noise, deadlines and stripes, is detected by the l1 norm regularization. The Frobenius norm is used for the heavy Gaussian noise in some real world scenarios. The alternating direction method of multipliers is adopted to solve the proposed optimization model, which simultaneously exploits the global low rank property and the spatial spectral smoothness of the HSI. Numerical experiments on both simulated and real data illustrate the superiority of the proposed method in comparison with the existing ones.
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the simplicity of B is characterized as follows. - Binary r-Means: Matrix B has at most r different columns. This problem is known to be NP-complete already for r=2. We show that the problem is solvable in time 2^{O(klog k)}cdot(nm)^{O(1)} and thus is fixed-parameter tractable parameterized by k. We prove that the problem admits a polynomial kernel when parameterized by r and k but it has no polynomial kernel when parameterized by k only unless NPsubseteq coNP/poly. We also complement these result by showing that when being parameterized by r and k, the problem admits an algorithm of running time 2^{O(rcdot sqrt{klog{(k+r)}})}(nm)^{O(1)}, which is subexponential in k for rin O(k^{1/2 -epsilon}) for any epsilon>0. - Low GF(2)-Rank Approximation: Matrix B is of GF(2)-rank at most r. This problem is known to be NP-complete already for r=1. It also known to be W[1]-hard when parameterized by k. Interestingly, when parameterized by r and k, the problem is not only fixed-parameter tractable, but it is solvable in time 2^{O(r^{ 3/2}cdot sqrt{klog{k}})}(nm)^{O(1)}, which is subexponential in k. - Low Boolean-Rank Approximation: Matrix B is of Boolean rank at most r. The problem is known to be NP-complete for k=0 as well as for r=1. We show that it is solvable in subexponential in k time 2^{O(r2^rcdot sqrt{klog k})}(nm)^{O(1)}.
Non-local self-similarity based low rank algorithms are the state-of-the-art methods for image denoising. In this paper, a new method is proposed by solving two issues: how to improve similar patches matching accuracy and build an appropriate low rank matrix approximation model for Gaussian noise. For the first issue, similar patches can be found locally or globally. Local patch matching is to find similar patches in a large neighborhood which can alleviate noise effect, but the number of patches may be insufficient. Global patch matching is to determine enough similar patches but the error rate of patch matching may be higher. Based on this, we first use local patch matching method to reduce noise and then use Gaussian patch mixture model to achieve global patch matching. The second issue is that there is no low rank matrix approximation model to adapt to Gaussian noise. We build a new model according to the characteristics of Gaussian noise, then prove that there is a globally optimal solution of the model. By solving the two issues, experimental results are reported to show that the proposed approach outperforms the state-of-the-art denoising methods includes several deep learning ones in both PSNR / SSIM values and visual quality.
The extensive use of medical CT has raised a public concern over the radiation dose to the patient. Reducing the radiation dose leads to increased CT image noise and artifacts, which can adversely affect not only the radiologists judgement but also the performance of downstream medical image analysis tasks. Various low-dose CT denoising methods, especially the recent deep learning based approaches, have produced impressive results. However, the existing denoising methods are all downstream-task-agnostic and neglect the diverse needs of the downstream applications. In this paper, we introduce a novel Task-Oriented Denoising Network (TOD-Net) with a task-oriented loss leveraging knowledge from the downstream tasks. Comprehensive empirical analysis shows that the task-oriented loss complements other task agnostic losses by steering the denoiser to enhance the image quality in the task related regions of interest. Such enhancement in turn brings general boosts on the performance of various methods for the downstream task. The presented work may shed light on the future development of context-aware image denoising methods.