Do you want to publish a course? Click here

Multipartite entanglement and secret key distribution in quantum networks

153   0   0.0 ( 0 )
 Added by Masahiro Takeoka
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Distribution and distillation of entanglement over quantum networks is a basic task for Quantum Internet applications. A fundamental question is then to determine the ultimate performance of entanglement distribution over a given network. Although this question has been extensively explored for bipartite entanglement-distribution scenarios, less is known about multipartite entanglement distribution. Here we establish the fundamental limit of distributing multipartite entanglement, in the form of GHZ states, over a quantum network. In particular, we determine the multipartite entanglement distribution capacity of a quantum network, in which the nodes are connected through lossy bosonic quantum channels. This setting corresponds to a practical quantum network consisting of optical links. The result is also applicable to the distribution of multipartite secret key, known as common key, for both a fully quantum network and trusted-node based quantum key distribution network. Our results set a general benchmark for designing a network topology and network quantum repeaters (or key relay in trusted nodes) to realize efficient GHZ state/common key distribution in both fully quantum and trusted-node-based networks. We show an example of how to overcome this limit by introducing a network quantum repeater. Our result follows from an upper bound on distillable GHZ entanglement introduced here, called the recursive-cut-and-merge bound, which constitutes major progress on a longstanding fundamental problem in multipartite entanglement theory. This bound allows for determining the distillable GHZ entanglement for a class of states consisting of products of bipartite pure states.



rate research

Read More

Quantum communications promise to revolutionise the way information is exchanged and protected. Unlike their classical counterpart, they are based on dim optical pulses that cannot be amplified by conventional optical repeaters. Consequently they are heavily impaired by propagation channel losses, which confine their transmission rate and range below a theoretical limit known as repeaterless secret key capacity. Overcoming this limit with todays technology was believed to be impossible until the recent proposal of a scheme that uses phase-coherent optical signals and an auxiliary measuring station to distribute quantum information. Here we experimentally demonstrate such a scheme for the first time and over significant channel losses, in excess of 90 dB. In the high loss regime, the resulting secure key rate exceeds the repeaterless secret key capacity, a result never achieved before. This represents a major step in promoting quantum communications as a dependable resource in todays world.
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$. We propose an alternative definition for genuine multipartite entanglement, whereby a quantum state is genuinely network $k$-entangled if it cannot be produced by applying local trace-preserving maps over several $k$-partite states distributed among the parties, even with the aid of global shared randomness. We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
Quantum entanglement between an arbitrary number of remote qubits is examined analytically. We show that there is a non-probabilistic way to address in one context the management of entanglement of an arbitrary number of mixed-state qubits by engaging quantitative measures of entanglement and a specific external control mechanism. Both all-party entanglement and weak inseparability are considered. We show that for $Nge4$, the death of all-party entanglement is permanent after an initial collapse. In contrast, weak inseparability can be deterministically managed for an arbitrarily large number of qubits almost indefinitely. Our result suggests a picture of the path that the system traverses in the Hilbert space.
We propose a unified mathematical scheme, based on a classical tensor isomorphism, for characterizing entanglement that works for pure states of multipartite systems of any number of particles. The degree of entanglement is indicated by a set of absolute values of the determinants for each subspace of the multipartite systems. Unlike other schemes, our scheme provides indication of the degrees of entanglement when the qubits are measured or lost successively, and leads naturally to the necessary and sufficient conditions for multipartite pure states to be separable. For systems with a large number of particles, a rougher indication of the degree of entanglement is provided by the set of mean values of the determinantal values for each subspace of the multipartite systems.
We develop a connection between tripartite information $I_3$, secret sharing protocols and multi-unitaries. This leads to explicit ((2,3)) threshold schemes in arbitrary dimension minimizing tripartite information $I_3$. As an application we show that Page scrambling unitaries simultaneously work for all secrets shared by Alice. Using the $I_3$-Ansatz for imperfect sharing schemes we discover examples of VIP sharing schemes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا