Majorana-mediated spin transport without spin polarization in Kitaev quantum spin liquids


Abstract in English

We study the spin transport through the quantum spin liquid (QSL) by investigating the real-time and real-space dynamics of the Kitaev spin system with a zigzag structure in terms of the time-dependent Majorana mean-field theory. After the magnetic field pulse is introduced to one of the edges, the spin moments are excited in the opposite edge region although no spin moments are induced in the Kitaev QSL region. This unusual spin transport originates from the fact that the $S=1/2$ spins are fractionalized into the itinerant and localized Majorana fermions in the Kitaev system. Although both Majorana fermions are excited by the magnetic pulse, only the itinerant Majorana fermions flow through the bulk regime without the spin excitation, resulting in the spin transport in the Kitaev system. We also demonstrate that this phenomenon can be observed even in the system with the Heisenberg interactions using the exact diagonalization.

Download