In cosmological perturbation theory it is convenient to use the scalar, vector, tensor (SVT) basis as defined according to how these components transform under 3-dimensional rotations. In attempting to solve the fluctuation equations that are automatically written in terms of gauge-invariant combinations of these components, the equations are taken to break up into separate SVT sectors, the decomposition theorem. Here, without needing to specify a gauge, we solve the fluctuation equations exactly for some standard cosmologies, to show that in general the various gauge-invariant combinations only separate at a higher-derivative level. To achieve separation at the level of the fluctuation equations themselves one has to assume boundary conditions for the higher-derivative equations. While asymptotic conditions suffice for fluctuations around a dS background or a $k=0$ RW background, for fluctuations around a $k eq 0$ RW background one additionally has to require that the fluctuations be well-behaved at the origin. We show that in certain cases the gauge-invariant combinations themselves involve both scalars and vectors. For such cases there is no decomposition theorem for the individual SVT components themselves, but for the gauge-invariant combinations there still can be. Given the lack of manifest covariance in defining a basis with respect to 3-dimensional rotations, we introduce an alternate SVT basis whose components are defined according to how they transform under 4-dimensional general coordinate transformations. With this basis the fluctuation equations greatly simplify, and while one can again break them up into separate gauge-invariant sectors at the higher-derivative level, in general we find that even with boundary conditions we do not obtain a decomposition theorem in which the fluctuations separate at the level of the fluctuation equations themselves.