No Arabic abstract
We present ZTF18aaqjovh (SN 2018bvw), a high-velocity (broad-lined) stripped-envelope (Type Ic) supernova (Ic-BL SN) discovered in the Zwicky Transient Facility one-day cadence survey. ZTF18aaqjovh shares a number of features in common with engine-driven explosions: the photospheric velocity and the shape of the optical light curve are very similar to that of the Type Ic-BL SN 1998bw, which was associated with a low-luminosity gamma-ray burst (LLGRB) and had relativistic ejecta. However, the radio luminosity of ZTF18aaqjovh is almost two orders of magnitude fainter than that of SN 1998bw at the same velocity phase, and the shock velocity is at most mildly relativistic (v=0.06-0.4c). A search of high-energy catalogs reveals no compelling GRB counterpart to ZTF18aaqjovh, and the limit on the prompt GRB luminosity of $L_{gamma,mathrm{iso}} approx 1.6 times 10^{48}$ erg/sec excludes a classical GRB but not an LLGRB. Altogether, ZTF18aaqjovh represents another transition event between engine-driven SNe associated with GRBs and ordinary Ic-BL SNe.
We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova (SN) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3pi survey just ~4 days after explosion. The SN had a peak luminosity, M_R ~ -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v_Si ~ 19,000 km/s at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56 Ni, M_Ni = 0.9 M_solar. Modeling of the light-curve points to a total ejecta mass, M_ej ~ 4.7 M_sol, and total kinetic energy, E_K ~ 11x10^51 ergs. The ratio of M_Ni to M_ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)_PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. We constrain any gamma-ray emission with E_gamma < 6x10^{48} erg (25-150 keV) and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy, E > 10^48 erg. We therefore rule out the association of a relativistic outflow like those which accompanied SN 1998bw and traditional long-duration GRBs, but place less-stringent constraints on a weak afterglow like that seen from XRF 060218. These observations challenge the importance of progenitor metallicity for the production of a GRB, and suggest that other parameters also play a key role.
We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray burst (GRB) associated SN 1998bw, while the shape of the r-band light curve is most similar to that of the relativistic SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart about 10 times less luminous than SN 1998bw, and with peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of iPTF radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible gamma-rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B, all point to iPTF17cw being a new candidate member of the rare sample of optically-discovered engine-driven BL-Ic SNe associated with relativistic ejecta.
We present optical and ultraviolet photometry, and low resolution optical spectroscopy of the broad-line type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during $-$5 to +87 d with respect to the date of maximum in $B$-band. A late phase spectrum obtained at +340 d is also presented. With an absolute $V$ band magnitude at peak of $M_{V}$ = $-$18.86 $pm$ 0.23 mag, SN 2014ad is fainter than Gamma Ray Burst (GRB) associated supernovae, and brighter than most of the normal and broad-line type Ic supernovae without an associated GRB. The spectral evolution indicates the expansion velocity of the ejecta, as measured using the Si,{sc ii} line, to be as high as $sim$ 33500 km,s$^{-1}$ around maximum, while during the post-maximum phase it settles down at $sim$ 15000 km,s$^{-1}$. The expansion velocity of SN 2014ad is higher than all other well observed broad-line type Ic supernovae except the GRB associated SN 2010bh. The explosion parameters, determined by applying the Arnetts analytical light curve model to the observed bolometric light curve, indicate that it was an energetic explosion with a kinetic energy of $sim$ (1 $pm$ 0.3)$times$10$^{52}$ ergs, a total ejected mass of $sim$ (3.3 $pm$ 0.8) M$_odot$, and $sim$ 0.24 M$_odot$ of $^{56}$Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be $sim$ 0.5 Z$_odot$.
We present the early-phase spectra and the light curves of the broad-lined supernova (SN) 2016coi from $t=7$ to $67$ days after the estimated explosion date. This SN was initially reported as a broad-lined Type SN Ic (SN Ic-BL). However, we found that spectra up to $t=12$ days exhibited the He~{sc i} $lambda$5876, $lambda$6678, and $lambda$7065 absorption lines. We show that the smoothed and blueshifted spectra of normal SNe Ib are remarkably similar to the observed spectrum of SN 2016coi. The line velocities of SN 2016coi were similar to those of SNe Ic-BL and significantly faster than those of SNe Ib. Analyses of the line velocity and light curve suggest that the kinetic energy and the total ejecta mass of SN 2016coi are similar to those of SNe Ic-BL. Together with broad-lined SNe 2009bb and 2012ap for which the detection of He~{sc i} were also reported, these SNe could be transitional objects between SNe Ic-BL and SNe Ib, and be classified as broad-lined Type `Ib SNe (SNe `Ib-BL). Our work demonstrates the diversity of the outermost layer in broad-lined SNe, which should be related to the variety of the evolutionary paths.
We present optical, radio, and X-ray observations of SN2020bvc (=ASASSN20bs; ZTF20aalxlis), a nearby ($z=0.0252$; $d$=114 Mpc) broad-lined (BL) Type Ic supernova (SN). Our observations show that SN2020bvc shares several properties in common with the Ic-BL SN2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio light curve is on the faint end of LLGRB-SNe ($L_mathrm{radio} approx 10^{37}$erg/s): we model our VLA observations (spanning 13-43 d) as synchrotron emission from a mildly relativistic ($v gtrsim 0.3c$) forward shock. Second, with Swift and Chandra we detect X-ray emission ($L_X approx 10^{41}$erg/s) that is not naturally explained as inverse Compton emission or as part of the same synchrotron spectrum as the radio emission. Third, high-cadence ($6times$/night) data from the Zwicky Transient Facility (ZTF) shows a double-peaked optical light curve, the first peak from shock-cooling emission from extended low-mass material (mass $M<10^{-2} M_odot$ at radius $R>10^{12}$cm) and the second peak from the radioactive decay of Ni-56. SN2020bvc is the first confirmed double-peaked Ic-BL SN discovered without a GRB trigger, and shows X-ray and radio emission similar to LLGRB-SNe: this is consistent with models in which the same mechanism produces both the LLGRB and the shock-cooling emission. For four of the five other nearby ($zlesssim0.05$) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN2006aj and SN2020bvc, i.e. that lasts $approx 1$d and reaches a peak luminosity $M approx -18$. X-ray and radio follow-up observations of future such events will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.