Do you want to publish a course? Click here

Jacobian Adversarially Regularized Networks for Robustness

96   0   0.0 ( 0 )
 Added by Alvin Chan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Adversarial examples are crafted with imperceptible perturbations with the intent to fool neural networks. Against such attacks, adversarial training and its variants stand as the strongest defense to date. Previous studies have pointed out that robust models that have undergone adversarial training tend to produce more salient and interpretable Jacobian matrices than their non-robust counterparts. A natural question is whether a model trained with an objective to produce salient Jacobian can result in better robustness. This paper answers this question with affirmative empirical results. We propose Jacobian Adversarially Regularized Networks (JARN) as a method to optimize the saliency of a classifiers Jacobian by adversarially regularizing the models Jacobian to resemble natural training images. Image classifiers trained with JARN show improved robust accuracy compared to standard models on the MNIST, SVHN and CIFAR-10 datasets, uncovering a new angle to boost robustness without using adversarial training examples.

rate research

Read More

Many machine learning models are vulnerable to adversarial attacks; for example, adding adversarial perturbations that are imperceptible to humans can often make machine learning models produce wrong predictions with high confidence. Moreover, although we may obtain robust models on the training dataset via adversarial training, in some problems the learned models cannot generalize well to the test data. In this paper, we focus on $ell_infty$ attacks, and study the adversarially robust generalization problem through the lens of Rademacher complexity. For binary linear classifiers, we prove tight bounds for the adversarial Rademacher complexity, and show that the adversarial Rademacher complexity is never smaller than its natural counterpart, and it has an unavoidable dimension dependence, unless the weight vector has bounded $ell_1$ norm. The results also extend to multi-class linear classifiers. For (nonlinear) neural networks, we show that the dimension dependence in the adversarial Rademacher complexity also exists. We further consider a surrogate adversarial loss for one-hidden layer ReLU network and prove margin bounds for this setting. Our results indicate that having $ell_1$ norm constraints on the weight matrices might be a potential way to improve generalization in the adversarial setting. We demonstrate experimental results that validate our theoretical findings.
This paper demonstrates a fatal vulnerability in natural language inference (NLI) and text classification systems. More concretely, we present a backdoor poisoning attack on NLP models. Our poisoning attack utilizes conditional adversarially regularized autoencoder (CARA) to generate poisoned training samples by poison injection in latent space. Just by adding 1% poisoned data, our experiments show that a victim BERT finetuned classifiers predictions can be steered to the poison target class with success rates of >80% when the input hypothesis is injected with the poison signature, demonstrating that NLI and text classification systems face a huge security risk.
Deep neural networks have been shown to be vulnerable to adversarial examples: very small perturbations of the input having a dramatic impact on the predictions. A wealth of adversarial attacks and distance metrics to quantify the similarity between natural and adversarial images have been proposed, recently enlarging the scope of adversarial examples with geometric transformations beyond pixel-wise attacks. In this context, we investigate the robustness to adversarial attacks of new Convolutional Neural Network architectures providing equivariance to rotations. We found that rotation-equivariant networks are significantly less vulnerable to geometric-based attacks than regular networks on the MNIST, CIFAR-10, and ImageNet datasets.
Neural network classifiers (NNCs) are known to be vulnerable to malicious adversarial perturbations of inputs including those modifying a small fraction of the input features named sparse or $L_0$ attacks. Effective and fast $L_0$ attacks, such as the widely used Jacobian-based Saliency Map Attack (JSMA) are practical to fool NNCs but also to improve their robustness. In this paper, we show that penalising saliency maps of JSMA by the output probabilities and the input features of the NNC allows to obtain more powerful attack algorithms that better take into account each inputs characteristics. This leads us to introduce improv
While deep learning has led to remarkable results on a number of challenging problems, researchers have discovered a vulnerability of neural networks in adversarial settings, where small but carefully chosen perturbations to the input can make the models produce extremely inaccurate outputs. This makes these models particularly unsuitable for safety-critical application domains (e.g. self-driving cars) where robustness is extremely important. Recent work has shown that augmenting training with adversarially generated data provides some degree of robustness against test-time attacks. In this paper we investigate how this approach scales as we increase the computational budget given to the defender. We show that increasing the number of parameters in adversarially-trained models increases their robustness, and in particular that ensembling smaller models while adversarially training the entire ensemble as a single model is a more efficient way of spending said budget than simply using a larger single model. Crucially, we show that it is the adversarial training of the ensemble, rather than the ensembling of adversarially trained models, which provides robustness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا