No Arabic abstract
We present the new parton distribution functions (PDFs) from the CTEQ-TEA collaboration, obtained using a wide variety of high-precision Large Hadron Collider (LHC) data, in addition to the combined HERA I+II deep-inelastic scattering data set, along with the data sets present in the CT14 global QCD analysis. New LHC measurements in single-inclusive jet production with the full rapidity coverage, as well as production of Drell-Yan pairs, top-quark pairs, and high-$p_T$ $Z$ bosons, are included to achieve the greatest sensitivity to the PDFs. The parton distributions are determined at NLO and NNLO, with each of these PDFs accompanied by error sets determined using the Hessian method. Fast PDF survey techniques, based on the Hessian representation and the Lagrange Multiplier method, are used to quantify the preference of each data set to quantities such as $alpha_s(m_Z)$, and the gluon and strange quark distributions. We designate the main resulting PDF set as CT18. The ATLAS 7 TeV precision $W/Z$ data are not included in CT18, due to their tension with other data sets in the global fit. Alternate PDF sets are generated including the ATLAS precision 7 TeV $W/Z$ data (CT18A), a new scale choice for low-$x$ DIS data (CT18X), or all of the above with a slightly higher choice for the charm mass (CT18Z). Theoretical calculations of standard candle cross sections at the LHC (such as the $gg$ fusion Higgs boson cross section) are presented.
We present the new CTEQ-TEA global analysis of quantum chromodynamics (QCD). In this analysis, parton distribution functions (PDFs) of the nucleon are determined within the Hessian method at the next-to-next-to leading order (NNLO) in perturbative QCD, based on the most recent measurements from the Large Hadron Collider (LHC) and a variety of world collider data. Because of difficulties in fitting both the ATLAS 7 and 8 TeV $W$ and $Z$ vector boson production cross section data, we present two families of PDFs, named CT18 and CT18$Z$ PDFs, respectively, without and with the ATLAS 7 TeV $W$ and $Z$ measurements. We study the impact of the CT18 family of PDFs on the theoretical predictions of standard candle cross sections at the LHC.
We study the possibility of intrinsic (non-perturbative) charm in parton distribution functions (PDF) of the proton, within the context of the CT10 next-to-next-to-leading order (NNLO) global analysis. Three models for the intrinsic charm (IC) quark content are compared: (i) $hat{c}(x) = 0$ (zero-IC model); (ii) $hat{c}(x)$ is parametrized by a valence-like parton distribution (BHPS model); (iii) $hat{c}(x)$ is parametrized by a sea-like parton distribution (SEA model). In these models, the intrinsic charm content, $hat{c}(x)$, is included in the charm PDF at the matching scale $Q_c=m_c=1.3$ GeV. The best fits to data are constructed and compared. Correlations between the value of $m_c$ and the amount of IC are also considered.
We report the results of a Monte Carlo global QCD analysis of unpolarized parton distribution functions (PDFs), including for the first time constraints from ratios of $^3$He to $^3$H structure functions recently obtained by the MARATHON experiment at Jefferson Lab. Our simultaneous analysis of nucleon PDFs and nuclear effects in $A=2$ and $A=3$ nuclei reveals the first indication for an isovector nuclear EMC effect in light nuclei. We find that while the MARATHON data yield relatively weak constraints on the $F_2^n/F_2^p$ neutron to proton structure function ratio and the $d/u$ PDF ratio, they suggest a strongly enhanced nuclear effect on the $d$-quark PDF in the bound proton.
We perform the first global fit to inclusive $Bto X_sgamma$ measurements using a model-independent treatment of the nonperturbative $b$-quark distribution function, with next-to-next-to-leading logarithmic resummation and $mathcal{O}(alpha_s^2)$ fixed-order contributions. The normalization of the $Bto X_sgamma$ decay rate, given by $lvert C_7^{rm incl} V_{tb} V_{ts}^*rvert^2$, is sensitive to physics beyond the Standard Model (SM). We determine $lvert C_7^{rm incl} V_{tb} V_{ts}^* rvert = (14.77 pm 0.51_{rm fit} pm 0.59_{rm theory} pm 0.08_{rm param})times 10^{-3}$, in good agreement with the SM prediction, and the $b$-quark mass $m_b^{1S} = (4.750 pm 0.027_{rm fit} pm 0.033_{rm theory} pm 0.003_{rm param}),mathrm{GeV}$. Our results suggest that the uncertainties in the extracted $Bto X_sgamma$ rate have been underestimated by up to a factor of two, leaving more room for beyond-SM contributions.
A new generation of parton distribution functions with increased precision and quantitative estimates of uncertainties is presented. This work significantly extends previous CTEQ and other global analyses on two fronts: (i) a full treatment of available experimental correlated systematic errors for both new and old data sets; (ii) a systematic and pragmatic treatment of uncertainties of the parton distributions and their physical predictions, using a recently developed eigenvector-basis approach to the Hessian method. The new gluon distribution is considerably harder than that of previous standard fits. A number of physics issues, particularly relating to the behavior of the gluon distribution, are addressed in more quantitative terms than before. Extensive results on the uncertainties of parton distributions at various scales, and on parton luminosity functions at the Tevatron RunII and the LHC, are presented. The latter provide the means to quickly estimate the uncertainties of a wide range of physical processes at these high-energy hadron colliders, based on current knowledge of the parton distributions. In particular, the uncertainties on the production cross sections of the $W,Z$ at the Tevatron and the LHC are estimated to be $pm 4%$ and $pm 5%$ respectively, and that of a light Higgs at the LHC to be $pm 5%$.