Precise prediction for the mass of the light MSSM Higgs boson for the case of a heavy gluino


Abstract in English

State-of-the-art predictions for the mass of the lightest MSSM Higgs boson usually involve the resummation of higher-order logarithmic contributions obtained within an effective-field-theory (EFT) approach, often combined with a fixed-order calculation into a hybrid result. For the phenomenologically interesting case of a significant hierarchy between the gluino mass and the masses of the scalar top quarks the predictions suffer from large theoretical uncertainties related to non-decoupling power-enhanced gluino contributions in the EFT results employing the $overline{text{DR}}$ renormalisation scheme. We demonstrate that the theoretical predictions in the heavy gluino region are vastly improved by the introduction of a suitable renormalisation scheme for the EFT calculation. It is shown that within this scheme a recently proposed resummation of large gluino contributions is absorbed into the model parameters, resulting in reliable and numerically stable predictions in the heavy-gluino gluino region. We also discuss the integration of the results into the public code FeynHiggs.

Download