No Arabic abstract
TiPO$_4$ is a Mott insulator and one of few inorganic compounds featuring a spin-Peierls phase at low temperature. Recent experimental studies have suggested the presence of spin-Peierls dimerization also at ambient temperature though at high pressure. Here, we present a combined experimental and theoretical study of the energetics of the high-pressure phase. We analyse dimerization properties and their coupling to spin degrees of freedom. Most importantly, we argue that TiPO$_4$ resents a direct analogue to the celebrated binary transition metal oxide VO$_2$. TiPO$_4$ allows to assess spin-dimer physics in the high-pressure regime in a controlled fashion, having the potential to become an important model system representative of the class of dimerized transition metal oxides.
We report high-pressure x-ray diffraction and magnetization measurements combined with ab-initio calculations to demonstrate that the high-pressure optical and transport transitions recently reported in TiOCl, correspond in fact to an enhanced Ti3+-Ti3+ dimerization existing already at room temperature. Our results confirm the formation of a metal-metal bond between Ti3+ ions along the b-axis of TiOCl, accompanied by a strong reduction of the electronic gap. The evolution of the dimerization with pressure suggests a crossover from the spin-Peierls to a conventional Peierls situation at high pressures.
The application of pressure can induce transitions between unconventional quantum phases in correlated materials. The inorganic compound TiOCl, composed of chains of S=1/2 Ti ions, is an ideal realization of a spin-Peierls system with a relatively simple unit cell. At ambient pressure, it is an insulator due to strong electronic interactions (a Mott insulator). Its resistivity shows a sudden decrease with increasing pressure, indicating a transition to a more metallic state which may coincide with the emergence of charge density wave order. Therefore, high pressure studies of the structure with x-rays are crucial in determining the ground-state physics in this quantum magnet. In ambient pressure, TiOCl exhibits a transition to an incommensurate nearly dimerized state at $T_{c2}=92$ K and to a commensurate dimerized state at $T_{c1}=66$ K. Here, we discover a rich phase diagram as a function of temperature and pressure using x-ray diffraction on a single crystal in a diamond anvil cell down to $T=4$ K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. At $sim$7 GPa, the extrapolated onset of the spin-Peierls phase occurs above $T=300$ K, indicating a quantum singlet state exists at room temperature. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.
Polarized far-infrared (FIR) spectroscopic measurements and FIR magneto-optical studies were performed on the inorganic spin-Peierls compound CuGeO_3. An absorption line, which was found at 98 cm$^{-1}$ in the dimerized phase (D phase), was assigned to a folded phonon mode of B$_{3u}$ symmetry. The splitting of the folded mode into two components in the incommensurate phase (IC phase) has been observed for the first time. A new broad absorption centered at 63 cm$^{-1}$ was observed only in the ${bf E}parallel b$ axis polarization, which was assigned to a magnetic excitation from singlet ground state to a continuum state.
The intertwined charge, spin, orbital, and lattice degrees of freedom could endow 5d compounds with exotic properties. Current interest is focused on electromagnetic interactions in these materials, whereas the important role of lattice geometry remains to be fully recognized. For this sake, we investigate pressure-induced phase transitions in the spin-orbit Mott insulator Sr3Ir2O7 with Raman, electrical resistance, and x-ray diffraction measurements. We reveal an interesting magnetic transition coinciding with a structural transition at 14.4 GPa, but without a concurrent insulator-metal transition. The conventional correlation between magnetic and Mott insulating states is thereby absent. The observed softening of the one-magnon mode can be explained by a reduced tetragonal distortion, while the actual magnetic transition is associated with tilting of the IrO6 octahedra. This work highlights the critical role of lattice frustration in determining the high-pressure phases of Sr3Ir2O7. The ability to control electromagnetic properties via manipulating the crystal structure with pressure promises a new way to explore new quantum states in spin-orbit Mott insulators.
We consider the dimer Hubbard model within Dynamical Mean Field Theory to study the interplay and competition between Mott and Peierls physics. We describe the various metal-insulator transition lines of the phase diagram and the break down of the different solutions that occur along them. We focus on the specific issue of the debated Mott-Peierls insulator crossover and describe the systematic evolution of the electronic structure across the phase diagram. We found that at low intra-dimer hopping the emerging local magnetic moments can unbind above a characteristic singlet temperature $T^*$. Upon increasing the inter-dimer hopping subtle changes occur in the electronic structure. Notably, we find Hubbard bands of a mix character with coherent and incoherent excitations. We argue that this state is relevant for VO$_2$ and its signatures may be observed in spectroscopic studies, and possibly through pump-probe experiments.