We study generic semilinear Schrodinger systems which may be written in Hamiltonian form. In the presence of a single gauge invariance, the components of a solution may exchange mass between them while preserving the total mass. We exploit this feature to unravel new orbital instability results for ground-states. More precisely, we first derive a general instability criterion and then apply it to some well-known models arising in several physical contexts. In particular, this mass-transfer instability allows us to exhibit $L^2$-subcritical unstable ground-states.