Do you want to publish a course? Click here

Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing

203   0   0.0 ( 0 )
 Added by Chien-Sheng Yang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. Thus, it is crucial to design efficient task scheduling policies that guarantee quality of service and the timeliness of computation queries. In this paper, we study the problem of computation offloading over unknown edge cloud networks with a sequence of timely computation jobs. Motivated by the MapReduce computation paradigm, we assume each computation job can be partitioned to smaller Map functions that are processed at the edge, and the Reduce function is computed at the user after the Map results are collected from the edge nodes. We model the service quality (success probability of returning result back to the user within deadline) of each edge device as function of context (collection of factors that affect edge devices). The user decides the computations to offload to each device with the goal of receiving a recoverable set of computation results in the given deadline. Our goal is to design an efficient edge computing policy in the dark without the knowledge of the context or computation capabilities of each device. By leveraging the emph{coded computing} framework in order to tackle failures or stragglers in computation, we formulate this problem using contextual-combinatorial multi-armed bandits (CC-MAB), and aim to maximize the cumulative expected reward. We propose an online learning policy called emph{online coded edge computing policy}, which provably achieves asymptotically-optimal performance in terms of regret loss compared with the optimal offline policy for the proposed CC-MAB problem.



rate research

Read More

Federated Learning (FL) is an exciting new paradigm that enables training a global model from data generated locally at the client nodes, without moving client data to a centralized server. Performance of FL in a multi-access edge computing (MEC) network suffers from slow convergence due to heterogeneity and stochastic fluctuations in compute power and communication link qualities across clients. A recent work, Coded Federated Learning (CFL), proposes to mitigate stragglers and speed up training for linear regression tasks by assigning redundant computations at the MEC server. Coding redundancy in CFL is computed by exploiting statistical properties of compute and communication delays. We develop CodedFedL that addresses the difficult task of extending CFL to distributed non-linear regression and classification problems with multioutput labels. The key innovation of our work is to exploit distributed kernel embedding using random Fourier features that transforms the training task into distributed linear regression. We provide an analytical solution for load allocation, and demonstrate significant performance gains for CodedFedL through experiments over benchmark datasets using practical network parameters.
Advances in deep neural networks (DNN) greatly bolster real-time detection of anomalous IoT data. However, IoT devices can hardly afford complex DNN models, and offloading anomaly detection tasks to the cloud incurs long delay. In this paper, we propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems to solve this problem, for both univariate and multivariate IoT data. First, we construct multiple anomaly detection DNN models with increasing complexity, and associate each model with a layer in HEC from bottom to top. Then, we design an adaptive scheme to select one of these models on the fly, based on the contextual information extracted from each input data. The model selection is formulated as a contextual bandit problem characterized by a single-step Markov decision process, and is solved using a reinforcement learning policy network. We build an HEC testbed, implement our proposed approach, and evaluate it using real IoT datasets. The demo shows that our proposed approach significantly reduces detection delay (e.g., by 71.4% for univariate dataset) without sacrificing accuracy, as compared to offloading detection tasks to the cloud. We also compare it with other baseline schemes and demonstrate that it achieves the best accuracy-delay tradeoff. Our demo is also available online: https://rebrand.ly/91a71
The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computation for their benefit. Boolean functions are the key components of many applications, e.g., verification functions in blockchain systems and design of cryptographic algorithms. We consider the problem of computing a Boolean function in a distributed computing system with particular focus on emph{security against Byzantine workers}. Any Boolean function can be modeled as a multivariate polynomial with high degree in general. However, the security threshold (i.e., the maximum number of adversarial workers can be tolerated such that the correct results can be obtained) provided by the recent proposed Lagrange Coded Computing (LCC) can be extremely low if the degree of the polynomial is high. We propose three different schemes called emph{coded Algebraic normal form (ANF)}, emph{coded Disjunctive normal form (DNF)} and emph{coded polynomial threshold function (PTF)}. The key idea of the proposed schemes is to model it as the concatenation of some low-degree polynomials and threshold functions. In terms of the security threshold, we show that the proposed coded ANF and coded DNF are optimal by providing a matching outer bound.
Distributed computing has become a common approach for large-scale computation of tasks due to benefits such as high reliability, scalability, computation speed, and costeffectiveness. However, distributed computing faces critical issues related to communication load and straggler effects. In particular, computing nodes need to exchange intermediate results with each other in order to calculate the final result, and this significantly increases communication overheads. Furthermore, a distributed computing network may include straggling nodes that run intermittently slower. This results in a longer overall time needed to execute the computation tasks, thereby limiting the performance of distributed computing. To address these issues, coded distributed computing (CDC), i.e., a combination of coding theoretic techniques and distributed computing, has been recently proposed as a promising solution. Coding theoretic techniques have proved effective in WiFi and cellular systems to deal with channel noise. Therefore, CDC may significantly reduce communication load, alleviate the effects of stragglers, provide fault-tolerance, privacy and security. In this survey, we first introduce the fundamentals of CDC, followed by basic CDC schemes. Then, we review and analyze a number of CDC approaches proposed to reduce the communication costs, mitigate the straggler effects, and guarantee privacy and security. Furthermore, we present and discuss applications of CDC in modern computer networks. Finally, we highlight important challenges and promising research directions related to CDC
The advances in deep neural networks (DNN) have significantly enhanced real-time detection of anomalous data in IoT applications. However, the complexity-accuracy-delay dilemma persists: complex DNN models offer higher accuracy, but typical IoT devices can barely afford the computation load, and the remedy of offloading the load to the cloud incurs long delay. In this paper, we address this challenge by proposing an adaptive anomaly detection scheme with hierarchical edge computing (HEC). Specifically, we first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer. Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network. We also incorporate a parallelism policy training method to accelerate the training process by taking advantage of distributed models. We build an HEC testbed using real IoT devices, implement and evaluate our contextual-bandit approach with both univariate and multivariate IoT datasets. In comparison with both baseline and state-of-the-art schemes, our adaptive approach strikes the best accuracy-delay tradeoff on the univariate dataset, and achieves the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay than the best (but inflexible) scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا