Do you want to publish a course? Click here

The evolution of radio jets across cosmic time

145   0   0.0 ( 0 )
 Added by Andrew Griffin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present predictions for the evolution of radio emission from Active Galactic Nuclei (AGNs). We use a model that follows the evolution of Supermassive Black Hole (SMBH) masses and spins, within the latest version of the GALFORM semi-analytic model of galaxy formation. We use a Blandford-Znajek type model to calculate the power of the relativistic jets produced by black hole accretion discs, and a scaling model to calculate radio luminosities. First, we present the predicted evolution of the jet power distribution, finding that this is dominated by objects fuelled by hot halo accretion and an ADAF accretion state for jet powers above $10^{32}mathrm{W}$ at $z=0$, with the contribution from objects fuelled by starbursts and in a thin disc accretion state being more important for lower jet powers at $z=0$ and at all jet powers at high redshifts ($zgeq3$). We then present the evolution of the jet power density from the model. The model is consistent with current observational estimates of jet powers from radio luminosities, once we allow for the significant uncertainties in these observational estimates. Next, we calibrate the model for radio emission to a range of observational estimates of the $z=0$ radio luminosity function. We compare the evolution of the model radio luminosity function to observational estimates for $0<z<6$, finding that the predicted evolution is similar to that observed. Finally, we explore recalibrating the model to reproduce luminosity functions of core radio emission, finding that the model is in approximate agreement with the observations.



rate research

Read More

Giant molecular clouds (GMCs) are well-studied in the local Universe, however, exactly how their properties vary during galaxy evolution is poorly understood due to challenging resolution requirements, both observational and computational. We present the first time-dependent analysis of giant molecular clouds in a Milky Way-like galaxy and an LMC-like dwarf galaxy of the FIRE-2 (Feedback In Realistic Environments) simulation suite, which have sufficient resolution to predict the bulk properties of GMCs in cosmological galaxy formation self-consistently. We show explicitly that the majority of star formation outside the galactic center occurs within self-gravitating gas structures that have properties consistent with observed bound GMCs. We find that the typical cloud bulk properties such as mass and surface density do not vary more than a factor of 2 in any systematic way after the first Gyr of cosmic evolution within a given galaxy from its progenitor. While the median properties are constant, the tails of the distributions can briefly undergo drastic changes, which can produce very massive and dense self-gravitating gas clouds. Once the galaxy forms, we identify only two systematic trends in bulk properties over cosmic time: a steady increase in metallicity produced by previous stellar populations and a weak decrease in bulk cloud temperatures. With the exception of metallicity we find no significant differences in cloud properties between the Milky Way-like and dwarf galaxies. These results have important implications for cosmological star and star cluster formation and put especially strong constraints on theories relating the stellar initial mass function to cloud properties.
Over the past decade increasingly robust estimates of the dense molecular gas content in galaxy populations between redshift 0 and the peak of cosmic galaxy/star formation from redshift 1-3 have become available. This rapid progress has been possible due to the advent of powerful ground-based, and space telescopes for combined study of several millimeter to far-IR, line or continuum tracers of the molecular gas and dust components. The main conclusions of this review are: 1. Star forming galaxies contained much more molecular gas at earlier cosmic epochs than at the present time. 2. The galaxy integrated depletion time scale for converting the gas into stars depends primarily on z or Hubble time, and at a given z, on the vertical location of a galaxy along the star-formation rate versus stellar mass main-sequence (MS) correlation. 3. Global rates of galaxy gas accretion primarily control the evolution of the cold molecular gas content and star formation rates of the dominant MS galaxy population, which in turn vary with the cosmological expansion. A second key driver may be global disk fragmentation in high-z, gas rich galaxies, which ties local free-fall time scales to galactic orbital times, and leads to rapid radial matter transport and bulge growth. Third, the low star formation efficiency inside molecular clouds is plausibly set by super-sonic streaming motions, and internal turbulence, which in turn may be driven by conversion of gravitational energy at high-z, and/or by local feedback from massive stars at low-z. 4. A simple gas regulator model is remarkably successful in predicting the combined evolution of molecular gas fractions, star formation rates, galactic winds, and gas phase metallicities.
This lecture briefly reviews the major recent advances in radio astronomy made possible by ultra-deep surveys, reaching microJansky flux density levels. A giant step forward in many fields, including the study of the evolution of the cosmic star formation history is expected with the advent of the Square Kilometer Array (SKA).
High redshift galaxies permit the study of the formation and evolution of X-ray binary populations on cosmological timescales, probing a wide range of metallicities and star-formation rates. In this paper, we present results from a large scale population synthesis study that models the X-ray binary populations from the first galaxies of the universe until today. We use as input to our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history and metallicity evolution of the universe. Our modeling, which is constrained by the observed X-ray properties of local galaxies, gives predictions about the global scaling of emission from X-ray binary populations with properties such as star-formation rate and stellar mass, and the evolution of these relations with redshift. Our simulations show that the X-ray luminosity density (X-ray luminosity per unit volume) from X-ray binaries in our Universe today is dominated by low-mass X-ray binaries, and it is only at z>2.5 that high-mass X-ray binaries become dominant. We also find that there is a delay of ~1.1 Gyr between the peak of X-ray emissivity from low-mass Xray binaries (at z~2.1) and the peak of star-formation rate density (at z~3.1). The peak of the X-ray luminosity from high-mass X-ray binaries (at z~3.9), happens ~0.8 Gyr before the peak of the star-formation rate density, which is due to the metallicity evolution of the Universe.
423 - Nick Seymour 2007
We present the results of a comprehensive Spitzer survey of 69 radio galaxies across 1<z<5.2. Using IRAC (3.6-8.0um), IRS (16um) and MIPS (24-160um) imaging, we decompose the rest-frame optical to infrared spectral energy distributions into stellar, AGN, and dust components and determine the contribution of host galaxy stellar emission at rest-frame H-band. Stellar masses derived from rest-frame near-IR data, where AGN and young star contributions are minimized, are significantly more reliable than those derived from rest-frame optical and UV data. We find that the fraction of emitted light at rest-frame H-band from stars is >60% for ~75% the high redshift radio galaxies. As expected from unified models of AGN, the stellar fraction of the rest-frame H-band luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5um) luminosity. Additionally, while the stellar H-band luminosity does not vary with stellar fraction, the total H-band luminosity anti-correlates with the stellar fraction as would be expected if the underlying hosts of these radio galaxies comprise a homogeneous population. The resultant stellar luminosities imply stellar masses of 10^{11-11.5}Msun even at the highest redshifts. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the stellar contribution to their mid-IR SEDs at shorter-wavelengths. The mid-IR luminosities alone classify most HzRGs as LIRGs or ULIRGs with even higher total-IR luminosities. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. We find a weak correlation of stellar mass with radio luminosity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا