Do you want to publish a course? Click here

Random time-change with inverses of multivariate subordinators: governing equations and fractional dynamics

150   0   0.0 ( 0 )
 Added by Luisa Beghin
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

It is well-known that compositions of Markov processes with inverse subordinators are governed by integro-differential equations of generalized fractional type. This kind of processes are of wide interest in statistical physics as they are connected to anomalous diffusions. In this paper we consider a generalization; more precisely we mean componentwise compositions of $mathbb{R}^d$-valued Markov processes with the components of an independent multivariate inverse subordinator. As a possible application, we present a model of anomalous diffusion in anisotropic medium, which is obtained as a weak limit of suitable continuous-time random walks.



rate research

Read More

In this paper we investigate the long time behavior of solutions to fractional in time evolution equations which appear as results of random time changes in Markov processes. We consider inverse subordinators as random times and use the subordination principle for the solutions to forward Kolmogorov equations. The class of subordinators for which asymptotic analysis may be realized is described.
164 - Dilip Madan , Marc Yor 2006
We describe the CGMY and Meixner processes as time changed Brownian motions. The CGMY uses a time change absolutely continuous with respect to the one-sided stable $(Y/2)$ subordinator while the Meixner time change is absolutely continuous with respect to the one sided stable $(1/2)$ subordinator$.$ The required time changes may be generated by simulating the requisite one-sided stable subordinator and throwing away some of the jumps as described in Rosinski (2001).
We study a random walk on $mathbb{F}_p$ defined by $X_{n+1}=1/X_n+varepsilon_{n+1}$ if $X_n eq 0$, and $X_{n+1}=varepsilon_{n+1}$ if $X_n=0$, where $varepsilon_{n+1}$ are independent and identically distributed. This can be seen as a non-linear analogue of the Chung--Diaconis--Graham process. We show that the mixing time is of order $log p$, answering a question of Chatterjee and Diaconis.
This paper explicitly computes the transition densities of a spectrally negative stable process with index greater than one, reflected at its infimum. First we derive the forward equation using the theory of sun-dual semigroups. The resulting forward equation is a boundary value problem on the positive half-line that involves a negative Riemann-Liouville fractional derivative in space, and a fractional reflecting boundary condition at the origin. Then we apply numerical methods to explicitly compute the transition density of this space-inhomogeneous Markov process, for any starting point, to any desired degree of accuracy. Finally, we discuss an application to fractional Cauchy problems, which involve a positive Caputo fractional derivative in time.
We consider a stochastic differential equation with additive fractional noise with Hurst parameter $H>1/2$, and a non-linear drift depending on an unknown parameter. We show the Local Asymptotic Normality property (LAN) of this parametric model with rate $sqrt{tau}$ as $taurightarrow infty$, when the solution is observed continuously on the time interval $[0,tau]$. The proof uses ergodic properties of the equation and a Girsanov-type transform. We analyse the particular case of the fractional Ornstein-Uhlenbeck process and show that the Maximum Likelihood Estimator is asymptotically efficient in the sense of the Minimax Theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا