Do you want to publish a course? Click here

Data blinding for the nEDM experiment at PSI

97   0   0.0 ( 0 )
 Added by Jochen Krempel
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Psychological bias towards, or away from, a prior measurement or a theory prediction is an intrinsic threat to any data analysis. While various methods can be used to avoid the bias, e.g. actively not looking at the result, only data blinding is a traceable and thus trustworthy method to circumvent the bias and to convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment, as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it is hard to inject a fake signal. We present an algorithm that modifies the data without influencing the experiment. Results of an automated analysis of the data are used to change the recorded spin state of a few neutrons of each measurement cycle. The flexible algorithm is applied twice to the data, to provide different data to various analysis teams. This gives us the option to sequentially apply various blinding offsets for separate analysis steps with independent teams. The subtle modification of the data allows us to modify the algorithm and to produce a re-blinded data set without revealing the blinding secret. The method was designed for the 2015/2016 measurement campaign of the nEDM experiment at the Paul Scherrer Institute. However, it can be re-used with minor modification for the follow-up experiment n2EDM, and may be suitable for comparable efforts.



rate research

Read More

93 - C. Abel , N. J. Ayres , G. Ban 2018
We report on the strategy used to optimize the sensitivity of our search for a neutron electric dipole moment at the Paul Scherrer Institute. Measurements were made upon ultracold neutrons stored within a single chamber at the heart of our apparatus. A mercury cohabiting magnetometer together with an array of cesium magnetometers were used to monitor the magnetic field, which was controlled and shaped by a series of precision field coils. In addition to details of the setup itself, we describe the chosen path to realize an appropriate balance between achieving the highest statistical sensitivity alongside the necessary control on systematic effects. The resulting irreducible sensitivity is better than 1*10-26 ecm. This contribution summarizes in a single coherent picture the results of the most recent publications of the collaboration.
The GERDA and Majorana experiments will search for neutrinoless double-beta decay of germanium-76 using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both GERDA and Majorana.
77 - Stefan Schmitt 2016
A selection of unfolding methods commonly used in High Energy Physics is compared. The methods discussed here are: bin-by-bin correction factors, matrix inversion, template fit, Tikhonov regularisation and two examples of iterative methods. Two procedures to choose the strength of the regularisation are tested, namely the L-curve scan and a scan of global correlation coefficients. The advantages and disadvantages of the unfolding methods and choices of the regularisation strength are discussed using a toy example.
The CMS experiment at the LHC accelerator at CERN relies on its computing infrastructure to stay at the frontier of High Energy Physics, searching for new phenomena and making discoveries. Even though computing plays a significant role in physics analysis we rarely use its data to predict the system behavior itself. A basic information about computing resources, user activities and site utilization can be really useful for improving the throughput of the system and its management. In this paper, we discuss a first CMS analysis of dataset popularity based on CMS meta-data which can be used as a model for dynamic data placement and provide the foundation of data-driven approach for the CMS computing infrastructure.
109 - Dimitri Bourilkov 2004
The Collaborative Analysis Versioning Environment System (CAVES) project concentrates on the interactions between users performing data and/or computing intensive analyses on large data sets, as encountered in many contemporary scientific disciplines. In modern science increasingly larger groups of researchers collaborate on a given topic over extended periods of time. The logging and sharing of knowledge about how analyses are performed or how results are obtained is important throughout the lifetime of a project. Here is where virtual data concepts play a major role. The ability to seamlessly log, exchange and reproduce results and the methods, algorithms and computer programs used in obtaining them enhances in a qualitative way the level of collaboration in a group or between groups in larger organizations. The CAVES project takes a pragmatic approach in assessing the needs of a community of scientists by building series of prototypes with increasing sophistication. In extending the functionality of existing data analysis packages with virtual data capabilities these prototypes provide an easy and habitual entry point for researchers to explore virtual data concepts in real life applications and to provide valuable feedback for refining the system design. The architecture is modular based on Web, Grid and other services which can be plugged in as desired. As a proof of principle we build a first system by extending the very popular data analysis framework ROOT, widely used in high energy physics and other fields, making it virtual data enabled.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا