Do you want to publish a course? Click here

Personalized Pareto-Improving Pricing-and-Routing Schemes for Near-Optimum Freight Routing: An Alternative Approach to Congestion Pricing

64   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We design a coordination mechanism for truck drivers that uses pricing-and-routing schemes that can help alleviate traffic congestion in a general transportation network. We consider the user heterogeneity in Value-Of-Time (VOT) by adopting a multi-class model with stochastic Origin-Destination (OD) demands for the truck drivers. The main characteristic of the mechanism is that the coordinator asks the truck drivers to declare their desired OD pair and pick their individual VOT from a set of $N$ available options, and guarantees that the resulting pricing-and-routing scheme is Pareto-improving, i.e. every truck driver will be better-off compared to the User Equilibrium (UE) and that every truck driver will have an incentive to truthfully declare his/her VOT, while leading to a revenue-neutral (budget balanced) on average mechanism. This approach enables us to design personalized (VOT-based) pricing-and-routing schemes. We show that the Optimum Pricing Scheme (OPS) can be calculated by solving a nonconvex optimization problem. To improve computational efficiency, we propose an Approximately Optimum Pricing Scheme (AOPS) and prove that it satisfies the aforementioned properties. Both pricing-and-routing schemes are compared to the Congestion Pricing with Uniform Revenue Refunding (CPURR) scheme through extensive simulation experiments where it is shown that OPS and AOPS achieve a much lower expected total travel time and expected total monetary cost for the users compared to the CPURR scheme, without negatively affecting the rest of the network. These results demonstrate the efficiency of personalized (VOT-based) pricing-and-routing schemes.



rate research

Read More

The prevalence of e-commerce has made detailed customers personal information readily accessible to retailers, and this information has been widely used in pricing decisions. When involving personalized information, how to protect the privacy of such information becomes a critical issue in practice. In this paper, we consider a dynamic pricing problem over $T$ time periods with an emph{unknown} demand function of posted price and personalized information. At each time $t$, the retailer observes an arriving customers personal information and offers a price. The customer then makes the purchase decision, which will be utilized by the retailer to learn the underlying demand function. There is potentially a serious privacy concern during this process: a third party agent might infer the personalized information and purchase decisions from price changes from the pricing system. Using the fundamental framework of differential privacy from computer science, we develop a privacy-preserving dynamic pricing policy, which tries to maximize the retailer revenue while avoiding information leakage of individual customers information and purchasing decisions. To this end, we first introduce a notion of emph{anticipating} $(varepsilon, delta)$-differential privacy that is tailored to dynamic pricing problem. Our policy achieves both the privacy guarantee and the performance guarantee in terms of regret. Roughly speaking, for $d$-dimensional personalized information, our algorithm achieves the expected regret at the order of $tilde{O}(varepsilon^{-1} sqrt{d^3 T})$, when the customers information is adversarially chosen. For stochastic personalized information, the regret bound can be further improved to $tilde{O}(sqrt{d^2T} + varepsilon^{-2} d^2)$
90 - Ning Xue , Ruibin Bai , Rong Qu 2020
Full truckload transportation (FTL) in the form of freight containers represents one of the most important transportation modes in international trade. Due to large volume and scale, in FTL, delivery time is often less critical but cost and service quality are crucial. Therefore, efficiently solving large scale multiple shift FTL problems is becoming more and more important and requires further research. In one of our earlier studies, a set covering model and a three-stage solution method were developed for a multi-shift FTL problem. This paper extends the previous work and presents a significantly more efficient approach by hybridising pricing and cutting strategies with metaheuristics (a variable neighbourhood search and a genetic algorithm). The metaheuristics were adopted to find promising columns (vehicle routes) guided by pricing and cuts are dynamically generated to eliminate infeasible flow assignments caused by incompatible commodities. Computational experiments on real-life and artificial benchmark FTL problems showed superior performance both in terms of computational time and solution quality, when compared with previous MIP based three-stage methods and two existing metaheuristics. The proposed cutting and heuristic pricing approach can efficiently solve large scale real-life FTL problems.
125 - Omer Lev 2016
Information delivery in a network of agents is a key issue for large, complex systems that need to do so in a predictable, efficient manner. The delivery of information in such multi-agent systems is typically implemented through routing protocols that determine how information flows through the network. Different routing protocols exist each with its own benefits, but it is generally unclear which properties can be successfully combined within a given algorithm. We approach this problem from the axiomatic point of view, i.e., we try to establish what are the properties we would seek to see in such a system, and examine the different properties which uniquely define common routing algorithms used today. We examine several desirable properties, such as robustness, which ensures adding nodes and edges does not change the routing in a radical, unpredictable ways; and properties that depend on the operating environment, such as an economic model, where nodes choose their paths based on the cost they are charged to pass information to the next node. We proceed to fully characterize minimal spanning tree, shortest path, and weakest link routing algorithms, showing a tight set of axioms for each.
A patient seller aims to sell a good to an impatient buyer (i.e., one who discounts utility over time). The buyer will remain in the market for a period of time $T$, and her private value is drawn from a publicly known distribution. What is the revenue-optimal pricing-curve (sequence of (price, time) pairs) for the seller? Is randomization of help here? Is the revenue-optimal pricing-curve computable in polynomial time? We answer these questions in this paper. We give an efficient algorithm for computing the revenue-optimal pricing curve. We show that pricing curves, that post a price at each point of time and let the buyer pick her utility maximizing time to buy, are revenue-optimal among a much broader class of sequential lottery mechanisms: namely, mechanisms that allow the seller to post a menu of lotteries at each point of time cannot get any higher revenue than pricing curves. We also show that the even broader class of mechanisms that allow the menu of lotteries to be adaptively set, can earn strictly higher revenue than that of pricing curves, and the revenue gap can be as big as the support size of the buyers value distribution.
89 - Eilyan Bitar , Yunjian Xu 2014
A large fraction of the total electric load is comprised of end-use devices whose demand for energy is inherently deferrable in time. Of interest is the potential to leverage on such latent flexibility in demand to absorb variability in power supplied from intermittent renewable generation. The challenge, however, lies in designing incentives to reliably induce the desired response in demand. With an eye to electric vehicle charging, we propose a novel forward market for differentiated electric power services, where consumers consent to deferred service of pre-specified loads in exchange for a reduced per-unit price for energy. The longer a consumer is willing to defer, the larger the reduction in price. The proposed forward contract provides a guarantee on the aggregate quantity of energy to be delivered by a consumer-specified deadline. Under the earliest-deadline-first (EDF) scheduling policy, which is shown to be optimal for the supplier, we explicitly characterize a non-discriminatory, deadline-differentiated pricing scheme that yields an efficient competitive equilibrium between the supplier and consumers. We further show that this efficient pricing scheme, in combination with EDF scheduling, is incentive compatible (IC) in that every consumer would like to reveal her true deadline to the supplier, regardless of the actions taken by other consumers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا