No Arabic abstract
Grant-free random access is a promising protocol to support massive access in beyond fifth-generation (B5G) cellular Internet-of-Things (IoT) with sporadic traffic. Specifically, in each coherence interval, the base station (BS) performs joint activity detection and channel estimation (JADCE) before data transmission. Due to the deployment of a large-scale antennas array and the existence of a huge number of IoT devices, JADCE usually has high computational complexity and needs long pilot sequences. To solve these challenges, this paper proposes a dimension reduction method, which projects the original device state matrix to a low-dimensional space by exploiting its sparse and low-rank structure. Then, we develop an optimized design framework with a coupled full column rank constraint for JADCE to reduce the size of the search space. However, the resulting problem is non-convex and highly intractable, for which the conventional convex relaxation approaches are inapplicable. To this end, we propose a logarithmic smoothing method for the non-smoothed objective function and transform the interested matrix to a positive semidefinite matrix, followed by giving a Riemannian trust-region algorithm to solve the problem in complex field. Simulation results show that the proposed algorithm is efficient to a large-scale JADCE problem and requires shorter pilot sequences than the state-of-art algorithms which only exploit the sparsity of device state matrix.
Millimeter-wave/Terahertz (mmW/THz) communications have shown great potential for wideband massive access in next-generation cellular internet of things (IoT) networks. To decrease the length of pilot sequences and the computational complexity in wideband massive access, this paper proposes a novel joint activity detection and channel estimation (JADCE) algorithm. Specifically, after formulating JADCE as a problem of recovering a simultaneously sparse-group and low rank matrix according to the characteristics of mmW/THz channel, we prove that jointly imposing $l_1$ norm and low rank on such a matrix can achieve a robust recovery under sufficient conditions, and verify that the number of measurements derived for the mmW/THz wideband massive access system is significantly smaller than currently known measurements bound derived for the conventional simultaneously sparse and low-rank recovery. Furthermore, we propose a multi-rank aware method by exploiting the quotient geometry of product of complex rank-$L$ matrices with the number of scattering clusters $L$. Theoretical analysis and simulation results confirm the superiority of the proposed algorithm in terms of computational complexity, detection error rate, and channel estimation accuracy.
Faced with the massive connection, sporadic transmission, and small-sized data packets in future cellular communication, a grant-free non-orthogonal random access (NORA) system is considered in this paper, which could reduce the access delay and support more devices. In order to address the joint user activity detection (UAD) and channel estimation (CE) problem in the grant-free NORA system, we propose a deep neural network-aided message passing-based block sparse Bayesian learning (DNN-MP-BSBL) algorithm. In this algorithm, the message passing process is transferred from a factor graph to a deep neural network (DNN). Weights are imposed on the messages in the DNN and trained to minimize the estimation error. It is shown that the weights could alleviate the convergence problem of the MP-BSBL algorithm. Simulation results show that the proposed DNN-MP-BSBL algorithm could improve the UAD and CE accuracy with a smaller number of iterations.
In the massive machine-type communication (mMTC) scenario, a large number of devices with sporadic traffic need to access the network on limited radio resources. While grant-free random access has emerged as a promising mechanism for massive access, its potential has not been fully unleashed. In particular, the common sparsity pattern in the received pilot and data signal has been ignored in most existing studies, and auxiliary information of channel decoding has not been utilized for user activity detection. This paper endeavors to develop advanced receivers in a holistic manner for joint activity detection, channel estimation, and data decoding. In particular, a turbo receiver based on the bilinear generalized approximate message passing (BiG-AMP) algorithm is developed. In this receiver, all the received symbols will be utilized to jointly estimate the channel state, user activity, and soft data symbols, which effectively exploits the common sparsity pattern. Meanwhile, the extrinsic information from the channel decoder will assist the joint channel estimation and data detection. To reduce the complexity, a low-cost side information-aided receiver is also proposed, where the channel decoder provides side information to update the estimates on whether a user is active or not. Simulation results show that the turbo receiver is able to reduce the activity detection, channel estimation, and data decoding errors effectively, while the side information-aided receiver notably outperforms the conventional method with a relatively low complexity.
With recent advances on the dense low-earth orbit (LEO) constellation, LEO satellite network has become one promising solution to providing global coverage for Internet-of-Things (IoT) services. Confronted with the sporadic transmission from randomly activated IoT devices, we consider the random access (RA) mechanism, and propose a grant-free RA (GF-RA) scheme to reduce the access delay to the mobile LEO satellites. A Bernoulli-Rician message passing with expectation maximization (BR-MP-EM) algorithm is proposed for this terrestrial-satellite GF-RA system to address the user activity detection (UAD) and channel estimation (CE) problem. This BR-MP-EM algorithm is divided into two stages. In the inner iterations, the Bernoulli messages and Rician messages are updated for the joint UAD and CE problem. Based on the output of the inner iterations, the expectation maximization (EM) method is employed in the outer iterations to update the hyper-parameters related to the channel impairments. Finally, simulation results show the UAD and CE accuracy of the proposed BR-MP-EM algorithm, as well as the robustness against the channel impairments.
In the upcoming Internet-of-Things (IoT) era, the communication is often featured by massive connection, sporadic transmission, and small-sized data packets, which poses new requirements on the delay expectation and resource allocation efficiency of the Random Access (RA) mechanisms of the IoT communication stack. A grant-free non-orthogonal random access (NORA) system is considered in this paper, which could simultaneously reduce the access delay and support more Machine Type Communication (MTC) devices with limited resources. In order to address the joint user activity detection (UAD) and channel estimation (CE) problem in the grant-free NORA system, we propose a deep neural network-aided message passing-based block sparse Bayesian learning (DNN-MP-BSBL) algorithm. In the DNN-MP-BSBL algorithm, the iterative message passing process is transferred from a factor graph to a deep neural network (DNN). Weights are imposed on the messages in the DNN and trained to minimize the estimation error. It is shown that the trained weights could alleviate the convergence problem of the MP-BSBL algorithm, especially on crowded RA scenarios. Simulation results show that the proposed DNN-MP-BSBL algorithm could improve the UAD and CE accuracy with a smaller number of iterations, indicating its advantages for low-latency grant-free NORA systems.