Do you want to publish a course? Click here

NuSTAR/XMM-Newton monitoring of the Seyfert 1 galaxy HE 1143-1810. Testing the two-corona scenario

96   0   0.0 ( 0 )
 Added by Francesco Ursini
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We test the two-corona accretion scenario for active galactic nuclei in the case of the `bare Seyfert 1 galaxy HE 1143-1810. We perform a detailed study of the broad-band UV--X-ray spectral properties and of the short-term variability. We present results of a joint XMM-Newton and NuSTAR monitoring of the source, consisting of 5x20 ks observations, each separated by 2 days, performed in December 2017. The source is variable in flux among the different observations, and a correlation is observed between the UV and X-ray emission. Moderate spectral variability is observed in the soft band. The time-averaged X-ray spectrum exhibits a cut-off at $sim 100$ keV consistent with thermal Comptonization. We detect an iron K$alpha$ line consistent with being constant during the campaign and originating from a mildly ionized medium. The line is accompanied by a moderate, ionized reflection component. A soft excess is clearly present below 2 keV and is well described by thermal Comptonization in a `warm corona with a temperature of $sim 0.5$ keV and a Thomson optical depth of $sim 17-18$. For the hot hard X-ray emitting corona, we obtain a temperature of $sim 20$ keV and an optical depth of $sim 4$ assuming a spherical geometry. A fit assuming a jet-emitting disc (JED) for the hot corona also provides a nice description of the broad-band spectrum. In this case, the data are consistent with an accretion rate varying between $sim 0.7$ and $sim 0.9$ in Eddington units and a transition between the outer standard disc and the inner JED at $sim 20$ gravitational radii. The broad-band high-energy data agree with an accretion flow model consisting of two phases: an outer standard accretion disc with a warm upper layer, responsible for the optical--UV emission and the soft X-ray excess, and an inner slim JED playing the role of a hard X-ray emitting hot corona.



rate research

Read More

XMM-Newton and NuSTAR multiple exposures allow us to disentangle the different emission components of active galactic nuclei (AGNs) and to study the evolution of their different spectral features. In this work, we present the timing and spectral properties of five simultaneous XMM-Newton and NuSTAR observations of the Narrow Line Seyfert 1 galaxy Mrk 359. We aim to provide the first broadband spectral modeling of Mrk 359 describing its emission spectrum from the UV up to the hard X-rays. To do this, we performed temporal and spectral data analysis, characterising the amplitude and spectral changes of the Mrk 359 time series and computing the 2-10 keV normalised excess variance. The spectral broadband modelling assumes the standard hot Comptonising corona and reflection component, while for the soft excess we tested two different models: a warm, optically thick Comptonising corona (the two-corona model) and a reflection model in which the soft-excess is the result of a blurred reflected continuum and line emission (the reflection model). High and low flux states were observed during the campaign. The former state has a softer spectral shape, while the latter shows a harder one. The photon index is in the 1.75-1.89 range, and only a lower limit to the hot-corona electron temperature can be found. A constant reflection component, likely associated with distant matter, is observed. Regarding the soft excess, we found that among the reflection models we tested, the one providing the better fit (reduced $chi^2$=1.14) is the high-density one. However, a significantly better fit (reduced $chi^2$=1.08) is found by modelling the soft excess with a warm Comptonisation model. The present analysis suggests the two-corona model as the best scenario for the optical-UV to X-ray emission spectrum of Mrk 359.
We have extensively studied the broadband X-ray spectra of the source ESO~141--G055 using all available xmm{} and ustar{} observations. We detect a prominent soft excess below 2 keV, a narrow Fe line and a Compton hump (>10 keV). The origin of the soft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disk and the intrinsic thermal Comptonisation model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a$>$0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $lambda_{Edd} sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K$alpha$ and the Compton hump has a column density of $rm N_{H} geq 7times 10^{24} rm cm^{-2} $. In addition, we detect a partially covering ionized absorption with ionization parameter $log xi/rm erg cm s^{-1}$ = $0.1^{+0.1}_{-0.1}$ and column density $rm N_{H} =20.6^{+1.0}_{-1.0}times 10^{22} rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.
AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS) Low Mass X-ray Binary (LMXB) showcasing intense ionised Fe K absorption. We present here the analysis of 11 XMM-Newton and 15 NuSTAR new data-sets (obtained between 2013-2016), therefore tripling the number of observations of AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR spectra, we greatly improve on the fitting of the X-ray continuum. During the soft state the emission can be described by a disk black body ($kTsim1.1-1.2$ keV and inner disc radius $r_{DBB}sim14$ km), plus hot ($kTsim2.2-3.0$ keV) black body radiation with a small emitting radius ($r_{BB}sim0.5-0.8$ km) likely associated with the boundary layer or NS surface, plus a faint Comptonisation component. Imprinted on the spectra are clear absorption features created by both neutral and ionised matter. Additionally, positive residuals suggestive of an emission Fe K$alpha$ disc line and consistent with relativistic ionised reflection are present during the soft state, while such residuals are not significant during the hard state. The hard state spectra are characterised by a hard ($Gammasim1.9-2.1$) power law, showing no evidence for a high energy cut off ($kT_e>60-140$ keV) and implying a small optical depth ($tau<1.6$). The new observations confirm the previously witnessed trend of exhibiting strong Fe K absorption in the soft state, that significantly weakens during the hard state. Optical (GROND) and radio (GMRT) observations suggest for AX J1745.6-2901 a standard broad band SED as typically observed in accreting neutron stars.
197 - D.R. Ballantyne 2014
Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectra and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year and found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of $Gamma=1.68^{+0.03}_{-0.02}$, while the photon-index of the higher flux spectrum is $Gamma=1.78^{+0.02}_{-0.03}$. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from $kT_e=330pm 30$ keV in the low flux data to $231^{+50}_{-88}$ keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts $sim 10$% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe K$alpha$ line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.
We present the multi epoch spectral analysis of HE 0436-4717, a bright Seyfert 1 galaxy serendipitously observed by the high energy satellite NuSTAR four times between December 2014 and December 2015. The source flux shows modest variability within each pointing and among the four observations. Spectra are well modelled in terms of a weakly variable primary power law with constant photon index ($Gamma$=2.01$pm$0.08). A constant narrow ion{Fe} K$alpha$ emission line suggests that this feature has an origin far from the central black hole, while a broad relativistic component is not required by the data. The Compton reflection component is also constant in flux with a corresponding reflection fraction R=0.7$^{+0.2}_{-0.3}$. The iron abundance is compatible with being Solar (A$_{Fe}$=1.2$^{+1.4}_{-0.4}$), and a lower limit for the high energy cut-off E$_c$>280 keV is obtained. Adopting a self-consistent model accounting for a primary Comptonized continuum, we obtain a lower limit for the hot corona electron temperature kT$_e$>65 keV and a corresponding upper limit for the coronal optical depth of $tau_e$<1.3. The results of the present analysis are consistent with the locus of local Seyfert galaxies in the kT$_e$-$tau_e$ and temperature-compactness diagrams.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا